matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Gleichungssystemeebenengleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Gleichungssysteme" - ebenengleichung
ebenengleichung < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ebenengleichung: tipp
Status: (Frage) beantwortet Status 
Datum: 14:42 Di 26.11.2013
Autor: arbeitsamt

Aufgabe
E : x = t u + s v

ist die durch die (nicht parallelen) Richtungsvektoren u; v  aufgespannte Ebene, die den Nullpunkt enthält.
Untersuchen Sie für u =( 1,3,-1,2), v=(-2.1.3.1). ob w1=(49,35,-65,18), [mm] w2=(-\bruch{2}{3}, \bruch{3}{2}, \bruch{7}{6}, \bruch{7}{6}) [/mm] in der durch u; v aufgespannten Ebene liegen.
Berechnen Sie ggf. t; s [mm] \in \IR [/mm] sodass wi = tu + sv gilt.

wie prüfe ich ob ein punkt in der ebene liegt?

ich habe den zweiten teil der aufgabe gelöst: "Berechnen Sie ggf. t; s [mm] \in \IR [/mm] sodass wi = tu + sv gilt"

für w1:

[mm] 0=\vektor{-49 \\ -35\\ 65\\ -18}+t\vektor{1 \\ 3\\ -1\\ 2}+s \vektor{-2 \\ 1\\ 3\\ 1} [/mm]

ich habe  über die gleichungssysteme die parameter bestimmt

t= 65+3s

0= -49+65+3s-2s

s=-16

t=65+3*(-16)=17


woher weiß ich jetzt ob w1 in der ebene liegt?


        
Bezug
ebenengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:10 Di 26.11.2013
Autor: fred97


> E : x = t u + s v
>
> ist die durch die (nicht parallelen) Richtungsvektoren u; v
>  aufgespannte Ebene, die den Nullpunkt enthält.
>  Untersuchen Sie für u =( 1,3,-1,2), v=(-2.1.3.1). ob
> w1=(49,35,-65,18), [mm]w2=(-\bruch{2}{3}, \bruch{3}{2}, \bruch{7}{6}, \bruch{7}{6})[/mm]
> in der durch u; v aufgespannten Ebene liegen.
>  Berechnen Sie ggf. t; s [mm]\in \IR[/mm] sodass wi = tu + sv gilt.
>  wie prüfe ich ob ein punkt in der ebene liegt?
>  
> ich habe den zweiten teil der aufgabe gelöst: "Berechnen
> Sie ggf. t; s [mm]\in \IR[/mm] sodass wi = tu + sv gilt"
>  
> für w1:
>  
> [mm]0=\vektor{-49 \\ -35\\ 65\\ -18}+t\vektor{1 \\ 3\\ -1\\ 2}+s \vektor{-2 \\ 1\\ 3\\ 1}[/mm]
>  
> ich habe  über die gleichungssysteme die parameter
> bestimmt
>  
> t= 65+3s
>  
> 0= -49+65+3s-2s
>  
> s=-16
>  
> t=65+3*(-16)=17
>  
>
> woher weiß ich jetzt ob w1 in der ebene liegt?

???

Das hast Du doch gerade ausgerechnet:

[mm] $17*u-16*v=w_1$ [/mm]

FRED

>  


Bezug
                
Bezug
ebenengleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:01 Di 26.11.2013
Autor: arbeitsamt

wie jetzt? ich habe die aufgabe für w1 komplett gelöst? wie prüft man denn jetzt allgemein ob ein punkt in der ebene liegt?

ich glaube ich habe einen fehler entdeckt

müsste ich nicht den punkt w1 mit dem ortsvektor der ebene subtrahieren?

also: w1 - ortsvektor der ebene

ich habe das anderesrum gemacht. wie ist das nun richtig?



Bezug
                        
Bezug
ebenengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:42 Di 26.11.2013
Autor: Diophant

Hallo,

> wie jetzt? ich habe die aufgabe für w1 komplett gelöst?

Ja. [ok]

> wie prüft man denn jetzt allgemein ob ein punkt in der
> ebene liegt?

Indem man untersucht, ob der Ounkt die Ebenengleichung erfüllt. Das ist im Fall der obigen Aufgabe genau dann gegeben, wenn es eine Linearkombination der beiden Richtungsvektoren gibt, die gleich dem Ortsvektor des fraglichen Punktes ist.

> ich glaube ich habe einen fehler entdeckt

>

> müsste ich nicht den punkt w1 mit dem ortsvektor der ebene
> subtrahieren?

Mit welchem Ortsvektor???

>

> also: w1 - ortsvektor der ebene

>

> ich habe das anderesrum gemacht. wie ist das nun richtig?

So wie du es gemacht hast, ist es richtig. Gäbe es überhaupt einen vom Nullvektor verschiedenen Ortsvektor, dann könntest du das mit dem Subtrahieren machen. Es ist ziemlich trivial. Du untersuchst ja, ob die Gleichung

p=a+t*u+s*v

eine eindeutige Lösung besitzt. In deiner Variante sieht das so aus:

p-a=t*u+s*v

und da wirst du mir Recht geben, dass das nicht wirklich einen Unterschied macht.


Gruß, Diophant
 

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]