matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektoreneingeschlossener Winkel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Vektoren" - eingeschlossener Winkel
eingeschlossener Winkel < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

eingeschlossener Winkel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:48 Sa 03.03.2007
Autor: Mathe-Andi

Aufgabe
Welchen Winkel schließt jeweils die Gerade g durch den Ursprung und den Punkt P mit den Koordinatenachsen ein?  P(3;3;1)

Hallo.

Ich hab schonmal die Geradengleichung aufstellt. In der Parameterform:

[Dateianhang nicht öffentlich]

und in der Koordinatenform: -3z+y=0

Ich weiß jetzt aber nicht mehr weiter.

Hoffe jemand kann mir helfen!


Viele Grüße

Andreas

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
eingeschlossener Winkel: Antwort
Status: (Antwort) fertig Status 
Datum: 15:54 Sa 03.03.2007
Autor: M.Rex

Hallo

Die Koordinatenachsen haben folgende Geradendarstellung:

x-Achse: [mm] \lambda*\vektor{1\\0\\0} [/mm]
y-Achse: [mm] \mu*\vektor{0\\1\\0} [/mm]
z-Achse: [mm] \nu*\vektor{0\\0\\1} [/mm]

Und der Schnittwinkel ist der Winkel zwischen den beiden Richtungsvektoren [mm] \vec{u} [/mm] und [mm] \vec{v} [/mm]

[mm] cos(\alpha)=\bruch{\vec{u}*\vec{v}}{|\vec{u}|*|\vec{v}|} [/mm]

Marius

Bezug
                
Bezug
eingeschlossener Winkel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:34 Sa 03.03.2007
Autor: Mathe-Andi

Irgendwie versteh ich das nicht. Was bedeuten diese Zeichen?: [mm] \lambda, \mu, \nu [/mm] Sind das einfach nur Parameter wie s, r und t? Und wo kommen die Richtungsvektoren u und v her?

Braucht man nicht drei Schnittpunkte zwischen der Geraden und den Koordinatenachsen?

Bezug
                        
Bezug
eingeschlossener Winkel: Antwort
Status: (Antwort) fertig Status 
Datum: 16:45 Sa 03.03.2007
Autor: Kroni

Hi,

[mm] \mu \lambda [/mm] etc sind in dem Falle das selbe wie s,r,t.
Man benutzt nur in der Vektorrechnung solche Parameter gerne.

[mm] \vec{u} [/mm] und [mm] \vec{v} [/mm] sind Richtungsvektoren zweier Geraden.

Die Koordinatenachsen kannst du ja so gesehen als Geraden darstellen mit den oben genannten Richtungsvektoren.

Und um dann den Schnittwinkel zweier Geraden zu berechnen, benutzt man die Cosinusformel oben, wobei du einmal dein [mm] \vec{u} [/mm] als Richtungsvektor einer Koordinatenachse definierst und  [mm] \vec{v} [/mm] als Richtungsvektor deiner Gerade.

Noch eine Anmerkung: Du hast oben was von Koordinatenform einer Geraden geschrieben.
Solch eine Form gibt es nur im R2.
Wenn du eine Koordiantenform
ax+by+cz+d=0 aufstellst, beschreibst du damit eine Ebene.

Was ich damit sagen will: Im R3 gibt es m.E. KEINE solche Darstellungsform einer Geraden. Du MUSST eine Gerade in Parameterform darstellen.

Slaín

Kroni

Bezug
                                
Bezug
eingeschlossener Winkel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:05 Sa 03.03.2007
Autor: Mathe-Andi

Also kann man die Geraden, die für die Koordinatenachsen stehen so schreiben:

[Dateianhang nicht öffentlich]

Was ist bei der gegebenen Geraden und bei den drei oben der Richtungsvektor? Sind das die Parameter?  Ich steh grade etwas auf dem Schlauch...

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
                                        
Bezug
eingeschlossener Winkel: Antwort
Status: (Antwort) fertig Status 
Datum: 18:24 Sa 03.03.2007
Autor: M.Rex

Hallo

Die Koordinatenachsen kann man so schreiben:

x-Achse:

[mm] \vec{x}=\underbrace{\vektor{0\\0\\0}}_{\text{Stützvektor}}+s*\underbrace{\vektor{1\\0\\0}}_{\text{Richtungsvektor}}=s*\vektor{1\\0\\0} [/mm]

Die anderen Achsen analog dazu.

Marius

Bezug
                                                
Bezug
eingeschlossener Winkel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:45 Sa 03.03.2007
Autor: Mathe-Andi

Ok, danke! Das hat mir geholfen.

Ich denke ich habe die Aufgabe gelöst. Ich hoffe es ist richtig, dass alle Winkel gleich groß sind:

[Dateianhang nicht öffentlich]


Viele Grüße

Andreas

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
                                                        
Bezug
eingeschlossener Winkel: Antwort
Status: (Antwort) fertig Status 
Datum: 19:05 Sa 03.03.2007
Autor: Kroni

Hi,

wie kommst du auf den Winkel mit der Z Achse?

Hier gilt doch:
[mm] \vec{u}=\vektor{0 \\ 0 \\ 1} [/mm]

Da der Richtungsvektor der Geraden aber [mm] \vec{v}=\vektor{-3 \\ -3 \\ -1} [/mm] ist, ergibt doch das Skalarprodukt der beiden Vektoren
-1 und NICHT -3.
D.h. der Winkel muss sich doch zwangsläufig verändern, da sich die Beträge der beiden Vektoren nicht verändern!

Bei den anderen beiden Aufgaben nehme ich mal an, dass du die Zahlen richtig in den TR eingeben hast.

Slaín,

Kroni


PS: Noch ein Zusatz: Man bekommt ja immer zwei Schnittwinkel heraus (die sich dann zu 180° ergänzen). Dort bezeichnet man dann immer den kleineren der beiden Winkel als Schnittwinkel!
D.h. deine Schnittwinkel sind im Prinzip richtig, jedoch müsstest du noch 180°-133,... rechnen, um den kleinsten Schnittwinkel anzugeben.
Um dieses Problem zu umgehen, setzt man auch einfach gerne einen Betrag um das Skalarprodukt.
D.h. du müsstest dann [mm] 3/\wurzel{19} [/mm] als [mm] cos\alpha [/mm] definieren. Dann bekommst du den Winkel 46,51° heraus, welches dem 180-133,... entspräche.

Slaín,

Kroni

Bezug
                                                                
Bezug
eingeschlossener Winkel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:43 Sa 03.03.2007
Autor: Mathe-Andi

Ja, bei dem Winkel der z-Achse hab ich wohl gepfuscht^^. Der Winkel ist 76,74° groß (180°-103,26°).

Vielen Dank für deine Hilfe!


Grüße

Andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]