matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Stochastikelek. gerät
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - elek. gerät
elek. gerät < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

elek. gerät: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:39 Mo 14.01.2008
Autor: AriR

Aufgabe
Ein Gerätenthält ein elektronisches Element, dessen Funktionieren für die Arbeit des Gerätes erforderlich
ist. Fällt das Element aus, so wird es sofort durch ein Reserveelement ersetzt — dieses
ggf. durch ein weiteres Reserveelement usw. Aufgrund langjähriger Erfahrung weiß man, daß die
zufälligen Lebensdauern der einzelnen Elemente als stochastisch unabhängige und identisch verteilte
Zufallsvariablen mit Erwartungswert μ = 50 Std. und Standardabweichung [mm] \sigma [/mm] = 10 Std. modelliert
werden können.
Bestimmen Sie (approximativ) die kleinstmögliche Anzahl von Reserveelementen, die erforderlich
ist, um mit einer Mindestwahrscheinlichkeit von 0,99 eine ununterbrochene Arbeit des Gerätes über
einen Zeitraum von 5000 Stunden zu garantieren.

hey leute

auch hier wieder leider keine ahnung wie man das angeht:(

        
Bezug
elek. gerät: wäre meine Idee...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:29 Mo 14.01.2008
Autor: tillll

$ [mm] E[X_i]=50, \sigma=10 [/mm] $
-> $ [mm] Var_(X_i)=100 [/mm] $ $

$ [mm] S_n [/mm] $ = $ [mm] X_1 +...+X_n, [/mm] $ ist u.iv.

Gesucht:
n für das gilt: $ [mm] P[S_n>5000]\geq [/mm] $ 0.99


Es ist:

$ [mm] P[\bruch{S_n - n \cdot 50}{\wurzel{n\cdot 100}}>\bruch{5000 - n \cdot 50}{\wurzel{n\cdot 100}}]\geq [/mm] 0.99 $

und damit:

$ [mm] 1-\Phi(\bruch{5000 - n \cdot 50}{\wurzel{n\cdot 100}})\geq [/mm] 0.99 [mm] \gdw \Phi(\bruch{5000 - n \cdot 50}{\wurzel{n\cdot 100}})\leq [/mm] 0.01 $


$ [mm] \Phi(\bruch{5000 - 50n}{\wurzel{100n}}) \le [/mm] 0,01 [mm] \gdw \Phi(- \bruch{5000 - 50n}{\wurzel{100n}}) \ge [/mm] 0,99 [mm] \gdw \Phi(\bruch{5n - 500}{\wurzel{n}}) \ge [/mm] 0,99 $

Das gilt ab etwa $ [mm] \Phi(2,33) [/mm] $, also

$ [mm] \bruch{5n - 500}{\wurzel{n}} \ge [/mm] 2,33 $
n = 105

Bezug
        
Bezug
elek. gerät: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Mi 16.01.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]