matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Matrizenelementare Zeilenoperationen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Matrizen" - elementare Zeilenoperationen
elementare Zeilenoperationen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

elementare Zeilenoperationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:58 Di 14.12.2010
Autor: Mathe-Lily

Aufgabe
Es sei [mm] \IK [/mm] ein Körper und A [mm] \in [/mm] M (n x n, [mm] \IK [/mm] ). Wir haben im Zusammenhang mit dem Gauß-Algorithmus die Matrizen [mm] T_{lk} [/mm] , [mm] S_{l} (\lambda) [/mm] und [mm] R_{lk} (\lambda) [/mm] kennengelernt, die die elementaren Zeilenoperationen realisieren.

Beispiel zur Erinnerung:  [mm] T_{lk} [/mm] * A entsteht aus A durch Vertauschen der l-ten Zeile mit der k-ten Zeile.

Zeigen Sie: A [mm] \in GL(n,\IK) [/mm] genau dann, wenn A ein Produkt von Matrizen der Form [mm] T_{lk} [/mm] , [mm] S_{l} (\lambda) [/mm] und [mm] R_{lk} (\lambda) [/mm] ist.

Hallo!
Ich muss hier ja zeigen, dass wenn [mm] A=M_{1} \cdots M_{k} (M_{1}, [/mm] ... , [mm] M_{k} [/mm] sind in diesem Fall irgendwelche elementaren Zeilenoperationen) ist, A auch invertierbar ist, oder?
Aber wie stelle ich das an?
Ich wäre für jede Hilfe dankbar!
Grüßle

        
Bezug
elementare Zeilenoperationen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:31 Mi 15.12.2010
Autor: rainerS

Hallo!

> Es sei [mm]\IK[/mm] ein Körper und A [mm]\in[/mm] M (n x n, [mm]\IK[/mm] ). Wir haben
> im Zusammenhang mit dem Gauß-Algorithmus die Matrizen
> [mm]T_{lk}[/mm] , [mm]S_{l} (\lambda)[/mm] und [mm]R_{lk} (\lambda)[/mm]
> kennengelernt, die die elementaren Zeilenoperationen
> realisieren.
>  
> Beispiel zur Erinnerung:  [mm]T_{lk}[/mm] * A entsteht aus A durch
> Vertauschen der l-ten Zeile mit der k-ten Zeile.
>  
> Zeigen Sie: A [mm]\in GL(n,\IK)[/mm] genau dann, wenn A ein Produkt
> von Matrizen der Form [mm]T_{lk}[/mm] , [mm]S_{l} (\lambda)[/mm] und [mm]R_{lk} (\lambda)[/mm]
> ist.
>  Hallo!
>  Ich muss hier ja zeigen, dass wenn [mm]A=M_{1} \cdots M_{k} (M_{1},[/mm]
> ... , [mm]M_{k}[/mm] sind in diesem Fall irgendwelche elementaren
> Zeilenoperationen) ist, A auch invertierbar ist, oder?

Du musst eine "genau dann"-Aussage zeigen. Was du schreibst, ist die eine Richtung: wenn A ein Produkt der angegebenen Form ist, dann ist A invertierbar. Tipp dazu: das Produkt invertierbarer Matrizen ist invertierbar.

Aber dann musst du auch noch die Umkehrung zeigen: wenn A invertierbar ist, dann ist A als ein solches Produkt darstellbar. Tipp dazu: zeige, dass du A durch elementare Zeilenoperationen in eine Diagonalmatrix umwandeln kannst.

Viele Grüße
   Rainer



Bezug
                
Bezug
elementare Zeilenoperationen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:56 Mi 15.12.2010
Autor: Mathe-Lily

Also, Danke erstmal, die Richtung, dass A invertierbar ist, da A ein Produkt aus invertierbaren Matrizen ist, hab ich jetzt verstanden.

Aber die andere Richtung macht mit noch Probleme:
Wie soll ich das denn darstellen, dass A eine Diagonalmatrix wird?
Und was hilft mir das?

Grüßle

Bezug
                        
Bezug
elementare Zeilenoperationen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 04:20 Do 16.12.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]