matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1endlich viele Nullstellen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Analysis des R1" - endlich viele Nullstellen
endlich viele Nullstellen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

endlich viele Nullstellen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:52 Mi 30.10.2013
Autor: ellegance88

Aufgabe
Die Funktion f sei differenzierbar  in [a,b] und für alle  x [mm] \in [/mm] [a,b]

| f(x) |  +| f´(x) | ungleich 0

Beweisen Sie, dass f in [a,b] nur endlich viele Nullstellen hat.

Hallo,
ist das richtig?

Es gilt ∣f(x)∣+∣f′(x)∣≠0. Angenommen, es gibt unendlich viele Nullstellen. Dann existiert auch eine Folge [mm] (x_n) [/mm] mit der Eigenschaft  für alle x [mm] \in N):f(x_n)=0. [/mm]

Da f differenzierbar ist, ist f auch stetig, und es folgt, dass das Bild von f ebenso ein Intervall ist. Damit ist Bild(f) stetig und beschränkt also existiert mind. ein Häufungspunkt c und es folgt f(c)=0.

Für die Ableitung f‘ ergibt sich daraus [mm] \limes_{x \to c} \bruch{f(x_n)-f(c)}{x_n-c} [/mm]

Und es folgt f(x)+f′(x)=0 bzw. ∣f(x)∣+∣f′(x)∣=0 ein Widerspruch zu Annahme! Und es folgt, dass f in [a,b] nur endlich viele Nullstellen haben kann.


Mit freundlichen Grüßen

ellegance88


        
Bezug
endlich viele Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:10 Mi 30.10.2013
Autor: fred97


> Die Funktion f sei differenzierbar  in [a,b] und für alle  
> x [mm]\in[/mm] [a,b]
>  
> | f(x) |  +| f´(x) | ungleich 0
>  
> Beweisen Sie, dass f in [a,b] nur endlich viele Nullstellen
> hat.
>  Hallo,
>  ist das richtig?
>  
> Es gilt ∣f(x)∣+∣f′(x)∣≠0. Angenommen, es gibt
> unendlich viele Nullstellen. Dann existiert auch eine Folge
> [mm](x_n)[/mm] mit der Eigenschaft  für alle x [mm]\in N):f(x_n)=0.[/mm]

du meinst: ... mit der Eigenschaft: [mm] f(x_n)=0 [/mm] für alle n [mm] \in \IN. [/mm]

Was Du auch noch brauchst: [mm] x_n \ne x_m [/mm] für alle n,m mit n [mm] \ne [/mm] m.


>  
> Da f differenzierbar ist, ist f auch stetig, und es folgt,
> dass das Bild von f ebenso ein Intervall ist. Damit ist
> Bild(f) stetig

Unsinn ! Bild(f) ist eine Menge.


> und beschränkt also existiert mind. ein
> Häufungspunkt c und es folgt f(c)=0.

????

[mm] (x_n) [/mm] ist beschränkt. Also enthält [mm] (x_n) [/mm] eine konvergente Teilfolge [mm] (x_{n_k}) [/mm] mit Grenzwert c in [a,b]

Da f stetig ist , ist auch f(c)=0.

>  
> Für die Ableitung f‘ ergibt sich daraus [mm]\limes_{x \to c} \bruch{f(x_n)-f(c)}{x_n-c}[/mm]

nein. Sondern

f'(c)=[mm]\limes_{k \to \infty} \bruch{f((x_{n_k})-f(c)}{(x_{n_k}-c}[/mm]

>  

Damit ist auch f'(c)=0.


> Und es folgt f(x)+f′(x)=0 bzw. ∣f(x)∣+∣f′(x)∣=0


Nein. Sondern ∣f(c)∣+∣f′(c)∣=0


> ein Widerspruch zu Annahme!


Ja


FRED

> Und es folgt, dass f in [a,b]
> nur endlich viele Nullstellen haben kann.
>  
>
> Mit freundlichen Grüßen
>  
> ellegance88
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]