matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Skalarprodukteermittlung Orthonormalbasis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Skalarprodukte" - ermittlung Orthonormalbasis
ermittlung Orthonormalbasis < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ermittlung Orthonormalbasis: wie sieht sowas aus
Status: (Frage) beantwortet Status 
Datum: 21:58 Di 25.12.2007
Autor: masa-ru

Aufgabe
Sei [mm] $B=\{\vec{e1},\vec{e2},\vec{e3}\}$ [/mm] und sei [mm] $\vec{u}= \vektor{4 \\ 2\\ 0}_{B}$.Ermitteln [/mm] Sie zu [mm] \vec{u} [/mm]

eine Orthonormalbasis der Form B_strich = [mm] \{\vec{v^0},\vec{v},\vec{w}\} [/mm]

Als aller erstet frohe Weihnachten!!!!

ik habe leider viel zu wenig anhung von den Vektoren :-(
und die aufgabenstellung kapiere ich nicht wirklich.

vl kann mir eienr auf die spünge helfen?


mfg
masa

        
Bezug
ermittlung Orthonormalbasis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:39 Di 25.12.2007
Autor: masa-ru

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

also die Vektoren \{\vec{u^{0}} , \vec{v} ,\vec{w}\}
sind Orthogonal daher ist deren Produkt = 0

1. $\vec{u^{0}} * \vec{v} = 0$
2. $\vec{u^{0}} * \vec{w} = 0$
3. $\vec{v}} * \vec{w}  = 0$

----
\vec{v} und \vec{w} sind unbekannt
----
$\vec{u^{0}}= \bruch{\vec{u}}{|\vec{u}|} = \bruch{\vektor{4 \\ 2 \\ 0}}{\wurzel{4^2 + 2^2 +0^2}}=  \bruch{1}{\wurzel{20}} * \vektor{4 \\ 2 \\ 0}$
----
da beim \vec{u^{0}} die z-Koordinate 0 ist läst sich vermuten das $\vec{w} = \vektor{0 \\ 0 \\ 1} $ ist.
----
Probe mit der 2-ten Gleichung:
$\vec{u^{0}} * \vec{w} = 0$

$ \bruch{1}{\wurzel{20}}* \vektor{4 \\ 2 \\ 0} * \vektor{0 \\ 0 \\ 1} = \bruch{4}{\wurzel{20}} * 0 + {\bruch{2}{\wurzel{20}} * 0 }+ \bruch{0}{\wurzel{20}} * 1 = 0$ ( es stimmt )

----
zu der Gleichung 1.
$\vec{u^{0}} * \vec{v} = 0$
\vec{v} ist immer noch unbekannt \vec{v} = \vektor{x1 \\ x2 \\ x3}
aus der gleichung muss sich ergeben:
$\wurzel{20} = \wurzel{4*5} = 2\wurzel{5}$

$ \bruch{1}{2\wurzel{5}}* \vektor{4 \\ 2 \\ 0} * \vektor{x1 \\ x3 \\ x3} = \bruch{4}{2\wurzel{5}}} * x1 + {\bruch{2}{2\wurzel{5}} * x2 }+ \bruch{0}{2\wurzel{5}} * x3 = 0$

$=\bruch{2}{\wurzel{5}}} * x1 + {\bruch{1}{\wurzel{5}} * x2 }$    $=> x1 = \bruch{-x2}{2} $  $=> x2 = -2*x1 $
----
und aus der 3ten Gleichung läst sich \vec{e3} des vektor \vec{v} rauszaubern den:

$\vec{v}} * \vec{w}  = 0$

$\vektor{x1 \\ x2 \\ x3} * \vektor{0 \\ 0 \\ 1} =  0* x1 + 0*x2 + 1*x3 = 0 $  $=> x3= 0$
----

somit sind alle vektoren komplett:

$\vec{u^{0}} = \bruch{1}{2\wurzel{5}}* \vektor{4 \\ 2 \\ 0}$
$\vec{w} = \vektor{0 \\ 0 \\ 1}$
$\vec{v} = \vektor{\bruch{-x2}{2} \\ -2*x1 \\ 0}$

bilden diese Vektoren nun diese Orthonormal basis ???

Bezug
                
Bezug
ermittlung Orthonormalbasis: Antwort
Status: (Antwort) fertig Status 
Datum: 00:42 Mi 26.12.2007
Autor: Event_Horizon

Hallo!

Ja, im Großen und Ganzen hast du die Aufgabe gelöst, wenngleich ich dazu ein paar Anmerkungen habe.

Die Idee mit [mm] \vektor{0\\0\\1} [/mm] ist sehr gut, der Beweis, daß der paßt, ist eigentlich schon so trivial, daß du das nicht zeigen mußt.

Dann kannst du aber auch auf den zweiten Vektor kommen. Da dieser rechtwinklig zu  [mm] \vektor{0\\0\\1} [/mm] sein soll, muß die 3. Komponente 0 sein. Dann soll er zum ersten Vektor rechtwinklig sein, was auf [mm] 4x_1+2x_2=0 [/mm] führt. EINE Lösung wäre [mm] x_1=-2 [/mm] und [mm] x_2=+4 [/mm] . Damit bist du fast fertig!

Letztendlich ist das grade nur ein zweidimensionales Problem, und da kannst du dir merken, wie man sich einen rechtwinkligen Vektor bastelt: Vertausche die beiden Komponenten, und drehe bei EINEM das Vorzeichen um.

Aber weiter mit deiner Rechnung:
Du hast da zwei Formeln [mm] x_1=... [/mm] und [mm] x_2=... [/mm] angegeben, und beide etwas verquert in den Vektor eingesetzt. Du müßtest daraus eher sowas wie [mm] \vektor{x_1\\-2x_1\\0} [/mm] machen, denn das besagt das Gleichungssystem: Wähle ein beliebiges [mm] x_1, [/mm] das [mm] x_2 [/mm] läßt sich daraus berechnen.

Was dir noch fehlt, ist die Normierung dieses Vektors. Dazu bestimmst du entweder [mm] x_1 [/mm] , oder du setzt für [mm] x_1 [/mm] irgendwas ein, und normierst dann ganz normal.

Dann nochwas zur Normierung: Du schleppst diesen Normierungsfaktor für u die ganze Zeit in deinen Rechnungen mit. Das bringt nix, außer unübersichtlichen Rechnungen. In deinem Fall würde ich zunächst nur orthogonale Vektoren suchen, und zuletzt die Normierung durchführen.






Bezug
                        
Bezug
ermittlung Orthonormalbasis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:41 Do 27.12.2007
Autor: masa-ru

Danke Event_Horizon.
ich habe zuvor nie was mit vektoren zun gehabt... deshalb mach ich noch haufen unnötigen sachen ^^, aber danke für den tipp :-)

mfg
masa

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]