matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysiserste Ableitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - erste Ableitung
erste Ableitung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

erste Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:46 Do 19.01.2006
Autor: Franzie

Hallöchen!
Hab grad ein bisschen rumgerechnet und bin hängen geblieben bei der Bestimmung der Ableitung von [mm] f(x)=x^{x}. [/mm] Ich weiß zwar, was rauskommen muss, aber wie komme ich auf das Ergebnis [mm] (ln(x)+1)*x^{x} [/mm]
Wäre für Hilfe dankbar.

liebe Grüße

        
Bezug
erste Ableitung: erst umformen
Status: (Antwort) fertig Status 
Datum: 17:52 Do 19.01.2006
Autor: Loddar

Hallo Franzie!


Du musst diese Funktion zunächst umschreiben, bevor Du mit den bekannten Ableitungsregeln vorgehen kannst:

$f(x) \ = \ [mm] x^x [/mm] \ = \ [mm] \left[ \ e^{\ln(x)} \ \right]^x [/mm] \ = \ [mm] e^{x*\ln(x)}$ [/mm]

Nun MBKettenregel in Verbindung mit der MBProduktregel anwenden ...


Gruß
Loddar


Bezug
                
Bezug
erste Ableitung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:42 Do 19.01.2006
Autor: Franzie

Danke schon mal. Also das mit der Umformung ist einleuchtend. Auch wie ich mittels Produktregel auf ln(x)+1 komme. Ich komm nur noch nicht auf den zweiten Faktor der Ableitung [mm] x^{x}. [/mm] Dazu muss ich sicher die Kettenregel anwenden. Die äußere Ableitung hab ich ja schon bestimmt mit ln(x)+1, aber an der inneren mangelts.

liebe Grüße

Bezug
                        
Bezug
erste Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:52 Do 19.01.2006
Autor: mathmetzsch

Hallo,

wir leiten zunächst mit der Kettenregel ab:

[mm] (e^{x*ln(x)})'=e^{x*ln(x)}* [/mm] innere Ableitung

Die innere Ableitung ist nun x*ln(x) abgeleitet, also mit der Produktregel

[mm] (x*ln(x))'=1*ln(x)+x*\bruch{1}{x}=ln(x)+1 [/mm]

Also ist die Ableitung
[mm] (e^{x*ln(x)})' [/mm]
[mm] =e^{x*ln(x)}*(ln(x)+1) [/mm]
[mm] =e^{x*ln(x)}*ln(x)+e^{x*ln(x)} [/mm]
[mm] =x^{x}*ln(x)+x^{x} [/mm]
[mm] =(1+ln(x))x^{x} [/mm]

Das war's!

Viele Grüße
Daniel

Bezug
                                
Bezug
erste Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:55 Do 19.01.2006
Autor: Franzie

Klar, danke dir.

Bezug
        
Bezug
erste Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:56 Do 19.01.2006
Autor: wulfen

Hallo Franzi. Also, die innere Ableitung hast du ja richtig. Die Kettenregel besagt doch innere Ableitung mal die Äußere. Du mußt also jetzt noch die e-Funktion an sich ableiten. Und die e-Funktion abgeleitet ist wieder die e-Funktion. du hast also dann das hier raus:

   (ln(x) + 1) * [mm] e^{xln(x)} [/mm]

   und [mm] e^{xln(x)} [/mm] ist ja [mm] x^{x} [/mm]

Hoffe du kannst das so verstehen. Ansonsten nochmal melden.

Gruß

Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]