matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik (Anwendungen)erwartungstreue und konsistenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Statistik (Anwendungen)" - erwartungstreue und konsistenz
erwartungstreue und konsistenz < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

erwartungstreue und konsistenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:16 Do 07.02.2008
Autor: jumape

Aufgabe
Es seine [mm] X_1,....,X_n [/mm] unabhängig mit unbekannter Verteilung PlF. Bestimmen Sie einen erwartungstreuen und konsistenten Schätzer für die Wahrscheinlichkeit eines Ereignisses [mm] A\in [/mm] F.

Erwartungstreue heißt doch das der Schätzer als Erwartungswert den zu schätzenden Wert hat und konsistenz, dass er gegen den zu schätzenden Wert konvergiert.

Ich würde ja als Schätzer intuitiv [mm] \bruch{1}{n}\summe_{i=1}^{n} P(X_i=A) [/mm] nehmen, weiß aber leider nicht wie ich jetzt beweise dass der konsistent und erwartungstreu ist.

Ich habe gelesen dass empirische Schätzer erwartungstreu sind. Aber woran erkenne ich einen empirischen Schätzer könnte mir das hierbei überhaupt helfen?

Es wäre nett wenn mir da jemand helfen könnte.



        
Bezug
erwartungstreue und konsistenz: Antwort
Status: (Antwort) fertig Status 
Datum: 01:45 Fr 08.02.2008
Autor: Zneques

Hallo,

um [mm] P(X_i=A) [/mm] zu berechnen müßte man doch schon die Verteilung von [mm] X_i [/mm] kennen. Du kannst also kein P(...) benutzen.
Die Schätzung muss durch Experimente gewonnen werden.
D.h. wenn du einen Würfel hast, aber die Verteilung vergessen hast, dann würfelst du 60 mal. Die, im Idealfall, 10 einsen bringen dich dann zu der Schätzung : [mm] P(Wuerfel=1)=\bruch{1}{60}*\summe_{i=1}^{60}1_{W_i=1}=\bruch{1}{60}*10=\bruch{1}{6} [/mm]
In der Art sollst du auch hier diese Aufgabe lösen.

So wie ich das sehe, sind, glaube ich, die [mm] X_1,...,X_n [/mm] nicht n Experimente mit der selben Verteilung, sonder ein Experiment mit verschiedenen Elementen.
Z.B. n verschiedene Würfel, von denen auch manche 20-seitig (o.ä.) sein können. Diese werden gleichzeitig geworfen. Das Ereigniss A besteht dann aus einer Beschreibung eines solchen Wurfs mit n Würfeln.
Dazu müsstest du dir überlegen was die Unabhängigkeit zu bedeuten hat.

Ciao.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]