matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Stochastikerzeugende Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - erzeugende Funktion
erzeugende Funktion < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

erzeugende Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:08 Di 03.01.2006
Autor: MasterEd

Aufgabe
Hallo,
kann mir jemand sagen, was genau eine "erzeugende Funktion" in der Stochastik ist und vor allem, wozu diese Dinger gut sind?

Ich habe einmal die Funktion f(t)=(t-2)^(-2) gegeben und soll zeigen, dass die eine erz. Funktion ist. Was genau muss man da für Eigenschaften nachweisen?

Entsprechend soll ich zeigen, wie man den Paramter A bei der Funktion [mm] g(t)=A*(e^t-e^{-t}) [/mm] wählen muss, damit sie eine erz. Funktion wird. Die Lösung kriege ich dann sicher selbst hin, wenn ich erstmal die Funktion f hinbekommen habe.


Vielen Dank!


Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: www.emath,de habe aber in 24 stunden keine antwort erhalten


        
Bezug
erzeugende Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 09:19 Mi 04.01.2006
Autor: mathiash

Hallo,

man spricht in der Stochastik von erzeugenden Funktionen im Zusammenhang mit
diskreten ganzzahligen Zufallsvariablen.

(1) Sei [mm] a_0,a_1,a_2,... [/mm] eine Folge reeller Zahlen. Falls

     F(s) = [mm] a_0 [/mm] + a_1s + [mm] a_2 s^2 [/mm] + [mm] a_3 s^3 [/mm] +.......

in einem Intervall [mm] -s_0 [/mm] <s < [mm] s_0 [/mm]  konvergiert,  so heisst A(s) erzeugende Funktion der Folge
[mm] (a_n)_{n\in\IN}. [/mm]

(2) Sei X eine ZV, die nur nicht-negative ganzzahlige Werte annimmt.
Seien

      [mm] p_j=Pr\{X=j\} [/mm]    und     [mm] q_j=Pr\{X>j\} [/mm]

Die erzeugenden Funktionender Folgen [mm] (p_j) [/mm] und [mm] (q_j) [/mm] sind

      P(s) = [mm] p_0 [/mm] + [mm] p_1 [/mm] s + [mm] p_2s^2 [/mm] + ....
      Q(s) = [mm] q_0 [/mm] + q_1s + [mm] q_2s^2 [/mm] +......

Wegen P(1)=1 konvergiert P(s) jedenfalls fuer [mm] -1\leq s\leq [/mm] 1. Da die Koeffizienten
[mm] q_j [/mm] fast alle <1 sind, konvergiert Q(s) jedenfalls fuer -1 < s< 1.

Es gilt zB fuer den Erwartungswert

E(x) = [mm] \sum_{j=1}^{\infty}jp_j [/mm]  = [mm] \sum_{k=0}^{\infty}q_k [/mm]    =  P'(1) = Q(1).

Informationen zu erzeugenden Funktionen finden sich in nahezu jedem
umfangreicheren Lehrbuch zur Stochastik.

Du musst bei Deiner Aufgabe also untersuchen, wann die Fkt. erzeugende Funktionen
einer Zahlenfolge [mm] (a_n) [/mm] sind, und ggf., wann sie erzeugende Fkt. von Wahrscheinlichkeitsverteilungen [mm] (p_j) [/mm] sind.

Gruss,

Mathias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]