erzeugende Funktionen < Sonstiges < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:07 Di 09.06.2009 | Autor: | Pille456 |
Hi,
Da ich nicht genau wusste wohin mit der Frage habe ich es mal hier gepostet.
Mal wieder fehlt mir der Einstieg in ein Thema. Diesmal sind es "erzeugende Funktionen" und die formale Potzenreihe.
Dazu habe ich folgendes Beispiel für die konstante Folge [mm] a_n [/mm] = 1 häufig gefunden:
[mm] \summe_{n=0}^{\infty} t^n [/mm] = [mm] \bruch{1}{1-t} \gdw \summe_{n=0}^{\infty} t^n \cdot [/mm] (1-t) = 1
Ich habe mir den Ausdruck [mm] \summe_{n=0}^{5} t^n \cdot [/mm] (1-t) mal angesehen und bis auf [mm] 1-t^6 [/mm] kürzt sich das alles raus. Weiterhin gilt [mm] \limes_{n\rightarrow\infty} t^n [/mm] = 0, da ja |t| < 1 gilt, sonst würde die Reihe ja eben nicht konvergieren. Und dann macht es auch Sinn, dass die Reihe gegen 1 geht.
Nur steht bei allen Einführungen in das Thema nun (und da ist glaube ich der Knackpunkt), dass man bei formalen Potenzreihen "sämtliche Konvergenzfragen ignoriert" und t nur ein Symbol ist, man aber trotzdem damit wie gewohnt aus der Analysis rechnen kann.
Desweiteren wird überall gesagt, durch ausmultiplizieren mit dem Cauchyprodukt wäre die Aufgabe direkt lösbar, aber ich konnte es allgemein darauf nicht "anwenden".
Könnt ihr das für mich vielleicht sortieren? ;)
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:55 Di 09.06.2009 | Autor: | karma |
Hallo und guten Tag,
der "springende Punkt" ist,
daß es sich um
u n e n d l i c h e
Reihen handelt.
Also:
[mm] \summe_{i=0}^{\infty}t^i [/mm] * (1-t)=
[mm] \summe_{i=0}^{\infty}t^i [/mm] - t * [mm] \summe_{i=0}^{\infty}t^i [/mm] =
[mm] \summe_{i=0}^{\infty}t^i [/mm] - [mm] \summe_{i=1}^{\infty}t^i [/mm] =
1 + [mm] \summe_{i=1}^{\infty}t^i [/mm] - [mm] \summe_{i=1}^{\infty}t^i [/mm] =
1 (!)
Schönen Gruß
Karsten
|
|
|
|