matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Sonstigeserzeugende Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Sonstiges" - erzeugende Funktionen
erzeugende Funktionen < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

erzeugende Funktionen: Hilfe beim Einstieg
Status: (Frage) beantwortet Status 
Datum: 10:07 Di 09.06.2009
Autor: Pille456

Hi,

Da ich nicht genau wusste wohin mit der Frage habe ich es mal hier gepostet.
Mal wieder fehlt mir der Einstieg in ein Thema. Diesmal sind es "erzeugende Funktionen" und die formale Potzenreihe.
Dazu habe ich folgendes Beispiel für die konstante Folge [mm] a_n [/mm] = 1 häufig gefunden:
[mm] \summe_{n=0}^{\infty} t^n [/mm] = [mm] \bruch{1}{1-t} \gdw \summe_{n=0}^{\infty} t^n \cdot [/mm] (1-t) = 1
Ich habe mir den Ausdruck [mm] \summe_{n=0}^{5} t^n \cdot [/mm] (1-t) mal angesehen und bis auf [mm] 1-t^6 [/mm] kürzt sich das alles raus. Weiterhin gilt [mm] \limes_{n\rightarrow\infty} t^n [/mm] = 0, da ja |t| < 1 gilt, sonst würde die Reihe ja eben nicht konvergieren. Und dann macht es auch Sinn, dass die Reihe gegen 1 geht.
Nur steht bei allen Einführungen in das Thema nun (und da ist glaube ich der Knackpunkt), dass man bei formalen Potenzreihen "sämtliche Konvergenzfragen ignoriert" und t nur ein Symbol ist, man aber trotzdem damit wie gewohnt aus der Analysis rechnen kann.
Desweiteren wird überall gesagt, durch ausmultiplizieren mit dem Cauchyprodukt wäre die Aufgabe direkt lösbar, aber ich konnte es allgemein darauf nicht "anwenden".

Könnt ihr das für mich vielleicht sortieren? ;)

        
Bezug
erzeugende Funktionen: unendliche Reihen
Status: (Antwort) fertig Status 
Datum: 11:55 Di 09.06.2009
Autor: karma

Hallo und guten Tag,

der "springende Punkt" ist,
daß es sich um
u n e n d l i c h e
Reihen handelt.

Also:
[mm] \summe_{i=0}^{\infty}t^i [/mm] * (1-t)=
[mm] \summe_{i=0}^{\infty}t^i [/mm] - t * [mm] \summe_{i=0}^{\infty}t^i [/mm] =
[mm] \summe_{i=0}^{\infty}t^i [/mm] - [mm] \summe_{i=1}^{\infty}t^i [/mm] =
1 + [mm] \summe_{i=1}^{\infty}t^i [/mm] - [mm] \summe_{i=1}^{\infty}t^i [/mm] =
1 (!)

Schönen Gruß
Karsten

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]