erzeugte Algebra < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:30 Di 14.04.2009 | Autor: | sonisun |
Aufgabe | Die von S erzeugte Algebra ist ja bekanntlich
[mm] \alpha(S):=\bigcap_{P(\Omega) \supset D \supset S} [/mm] D, wobei D Algebra ist.
Dies ist auch gleichzeitig die Menge aller endlichen, disjunkten Vereinigungen von endlichen Durchschnitten von Mengen aus S oder deren Komplemente.
|
Hallo!
So wie oben angegeben steht es bei uns im Skript und die Richtigheit der Aussage wurde mir auch bestätigt, doch ich verstehe absolut nicht, wieso dies die Menge aller endlichen Vereinigungen ist!
ein Vereinigungszeichen ist doch gar nicht vorhanden.
ich verstehe die Aussage so, dass [mm] \alpha(S) [/mm] die Menge aller Durchschnitte von Algebren sein, die S enthalten. die andere Interpretation verstehe ich einfach nicht.
Vielen lieben Dank
sonisun
PS: ich konnte leider keine Aufgabenstellung exakt wiedergeben, da dies keine Übungsaufgabe ist, sondern einfach ein Verständnisproblem, das ich vor meiner mündlichen Prüfung morgen gerne noch ausräumen würde.
|
|
|
|
> Die von S erzeugte Algebra ist ja bekanntlich
> [mm]\alpha(S):=\bigcap_{P(\Omega) \supset D \supset S}[/mm] D, wobei
> D Algebra ist.
> Dies ist auch gleichzeitig die Menge aller endlichen,
> disjunkten Vereinigungen von endlichen Durchschnitten von
> Mengen aus S oder deren Komplemente.
>
>
> Hallo!
> So wie oben angegeben steht es bei uns im Skript und die
> Richtigheit der Aussage wurde mir auch bestätigt, doch
> ich verstehe absolut nicht, wieso dies die Menge aller
> endlichen Vereinigungen ist!
> ein Vereinigungszeichen ist doch gar nicht vorhanden.
> ich verstehe die Aussage so, dass [mm]\alpha(S)[/mm] die Menge aller
> Durchschnitte von Algebren sein, die S enthalten. die
> andere Interpretation verstehe ich einfach nicht.
Ja, richtig. [mm] \alpha(S) [/mm] ist die kleinste Algebra, die S enthält. Zum zweiten Teil der Interpretation ein Tip.
Hier steht: "Dies ist auch gleichzeitig die Menge aller endlichen, disjunkten Vereinigungen von endlichen Durchschnitten von Mengen aus S oder deren Komplemente". Nun haben wir [mm] \alpha(S) [/mm] ist die kleinste Algebra, die S enthält. Wie ist denn eine Algebra definiert? Wirds klarer?
Grüße, Steffen
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:18 Di 14.04.2009 | Autor: | sonisun |
Hm, also eine Algebra ist ja ein Mengensystem, das bezüglich Komplementärbildung und Vereinigung zweier Ereignisse abgeschlossen.
Darf ich das so verstehen, dass die Durchschnitte von Algebren D, welche S enthalten, in der Algebra [mm] \alpha(S) [/mm] liegen. (Und nenne wie zwei dieser Durchschnitte, welche S enthalten, D1 und D2) Demnach müssen aber nach der Definition der Algebra auch die Vereinigungen von D1 und D2 wieder in der Algebra sein.
Und daher lässt sich sagen, dass die von S erzeugte Algebra gleich der Vereinigungen von Durchschnitten von Mengen aus S oder deren Komplemente ist.
Was mir hier noch unklar ist, : wieso müssen es endliche, disjunkte Vereinigungen sein. Also endliche ist klar, aber disjunkt?
|
|
|
|
|
Hallo,
nein, m.E. ist es einfacher zu verstehen. Wir hatten festgestellt, dass [mm] \alpha(S) [/mm] die kleinste Algebra ist, die S enthält. Nun hast du richtig gesagt, dass eine definierende Eigenschaft einer Algebra ist, dass zu einer Menge A auch das Komplement [mm] A^c [/mm] in der Algebra liegt. Nun sie A eine Teilmenge von S, dann liegt A in [mm] \alpha(S) [/mm] und da [mm] \alpha(S) [/mm] eine Algebra ist auch [mm] A^c. [/mm] So würde ich es bzgl. der Komplemente verstehen.
Das mit dem disjunkt kann ich mir auch gerade nicht erklären, da es bei Algebren egal ist ob die Mengenfolge disjunkt ist oder nicht.
Grüße, Steffen
|
|
|
|