matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche Differentialgleichungenexaktes differential
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - exaktes differential
exaktes differential < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

exaktes differential: "Frage"
Status: (Frage) beantwortet Status 
Datum: 12:38 So 20.04.2008
Autor: Dagobert

hallo!

hätte ne frage zu folgendem beispiel:
[Dateianhang nicht öffentlich]

und zwar weiß ich da nicht so richtig was ich machen soll, habe nicht viel dazu gefunden. das kann ma ja so auch schreiben:

[mm] df=(\partial f/\partial x)*dx+(\partial f/\partial [/mm] y)*dy oder?

nur wie mache ich da weiter?

danke!

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
exaktes differential: Antwort
Status: (Antwort) fertig Status 
Datum: 12:53 So 20.04.2008
Autor: blascowitz

Hallo

Also du hast jetzt eine Differenzialgleichung in der form $p(x)dx+q(x)dy=0$ gegeben (in deinem Fall ist [mm] $p(x)=3ax^2\cdot [/mm] y$ und [mm] $q(x)=ax^3+2by$.) [/mm] Jetzt kannst du ja die Oberste Gleichung ja durch $dx$ "teilen". Dann hast du da stehen $p(x)+q(x)y'=0$. Eine solche Differenzialgleichung heißt exakt wenn [mm] \bruch{\partial p}{\partial y}=\bruch{\partial q}{\partial x} [/mm] ist. Du musst also die erste Funktion nach y ableiten und die zweite Funktion nach x und dann beide ableitungen vergleichen, kommt das selbe raus ist die Differenzialgleichung exakt, wenn nicht heißt sie fast exakt
Einen schönen Tag noch

Bezug
        
Bezug
exaktes differential: Antwort
Status: (Antwort) fertig Status 
Datum: 13:40 So 20.04.2008
Autor: SEcki


> hätte ne frage zu folgendem beispiel:
>  [Dateianhang nicht öffentlich]

Erstens: bitte mach dir die Mühe, das im Formeleditor zu schreiben.

Zweitens: auf was ist diese Form definiert? Auf dem [m]\IR^2[/m]? Davon hängt

> [mm]df=(\partial f/\partial x)*dx+(\partial f/\partial[/mm] y)*dy
> oder?
>
> nur wie mache ich da weiter?

Einfach noch mal d auf die Funktion anwenden - kommt auf das gleiche raus, wie in der anderen Antwort. Falls dies 0 ist, dann kann man die Form lokal oder beim [m]\IR^2[/m] auf dem ganzen Raum integrieren - also so ein f finden (Lemma von Poincare).

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]