matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysisexp
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - exp
exp < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

exp: Frage
Status: (Frage) beantwortet Status 
Datum: 23:57 Mo 09.05.2005
Autor: LOLO

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


hallo!

könnte mir bitte jemand helfen? ich verstehe nicht, warum
exp(A) exp(B) = [mm] \pmat{ e & e \\ 0 & 1 } [/mm] ist, wobei
A = [mm] \pmat{ 1 & 0 \\ 0 & 0 } [/mm] und B = [mm] \pmat{ 0 & 1 \\ 0 & 0 }. [/mm]

wie rechne ich das? vielen dank für antwort!

        
Bezug
exp: Antwort
Status: (Antwort) fertig Status 
Datum: 00:09 Di 10.05.2005
Autor: Max

Hallo LOLO,

dir ein herzliches
[willkommenmr]

Der Ausdruck $Exp(A)$ wird ja über eine Reihe definiert, nämlich [mm] $Exp(A)=\sum_{k=0}^{\infty} \frac{1}{k!}A^k$. [/mm] Hast du denn man die Potenzen von $A$ bestimmt und eine Vermutung für [mm] $A^k$ [/mm] erhalten? Und für [mm] $B^k$? [/mm] Wenn du diese kennst kannst du leicht angeben was $Exp(A)$ bzw. $Exp(B)$ ist, dann musst du ja nur noch zwei Matrizen multiplizieren. Trotzdem vermute ich, dass nicht [mm] $\pmat{e & e\\0 & 1}$ [/mm] raus kommt. Woher kennst du die Lösung?

Gruß Max

Bezug
                
Bezug
exp: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:23 Di 10.05.2005
Autor: Marcel

Hi Lolo und Max!

> Trotzdem vermute
> ich, dass nicht [mm]\pmat{e & e\\0 & 1}[/mm] raus kommt. Woher
> kennst du die Lösung?

Soweit ich mich nicht verrechnet habe, erhält man aber doch:
[m]\exp(A)*\exp(B)=\pmat{ e & 0 \\ 0 & 1 }*\pmat{ 1 & 1 \\ 0 & 1 } = \pmat{ e & e \\ 0 & 1 }[/m]
(Nach dem dritten Nachrechnen sollte es jetzt aber hoffentlich mal stimmen, langsam zweifle ich an mir selbst [kopfkratz2]...)  

Viele Grüße,
Marcel

Bezug
                        
Bezug
exp: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:49 Di 10.05.2005
Autor: mathemaduenn

Hallo Marcel,
Ich bekomme
exp(A)= [mm] \pmat{ e & 0 \\ 0 & 0 } [/mm] weil das ja schon so schön Diagonalgestalt hat.
und exp(B)=B wg. B*B=0
viele Grüße
Christian


Bezug
                                
Bezug
exp: Nö, da A^0=B^0=I_2
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:57 Di 10.05.2005
Autor: Marcel

Hallo Christian!

Leider nicht, da [mm] $\frac{A^0}{0!}=\frac{B^0}{0!}=\pmat{1 & 0 \\ 0 & 1}$ [/mm] ;-)
Daher erhalten wir:
[mm]\exp(A)=\summe_{k=0}^{\infty}\frac{A^k}{k!}=\pmat{1 & 0 \\ 0 & 1}+\pmat{e-1 & 0 \\ 0 & 0}=\pmat{e & 0 \\ 0 & 1}[/mm],

[m]\exp(B)=\frac{B^0}{0!}+\frac{B}{1!}=\pmat{1 & 0 \\ 0 & 1}+\pmat{0 & 1 \\ 0 & 0}=\pmat{1 & 1 \\ 0 & 1}[/m]

Viele Grüße,
Marcel

Bezug
                                        
Bezug
exp: Ja klar
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:22 Di 10.05.2005
Autor: mathemaduenn

Hallo Marcel,
Bei mir ist halt [mm]e^0=0[/mm] [Dateianhang nicht öffentlich]
viele Grüße
Christian

Bezug
                                                
Bezug
exp: Achso *g*
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:53 Di 10.05.2005
Autor: Marcel

Hallo Christian!

> Hallo Marcel,
>  Bei mir ist halt [mm]e^0=0[/mm] [Dateianhang nicht öffentlich]

[grins]

Viele Grüße,
Marcel

Bezug
        
Bezug
exp: Rechnung
Status: (Antwort) fertig Status 
Datum: 01:34 Di 10.05.2005
Autor: Marcel

Hallo!

Damit auch andere meine Rechnung ggf. als "falsch" markieren können ;-) (aber es kommt das Gewünschte raus [huepf]), rechne ich es dir mal vor:
Es ist (hier) bekanntlich (und zwar definitionsgemäß!):
[mm] $A^0=B^0=\pmat{1 & 0 \\ 0 & 1}$. [/mm]

Weiter hat man:
[mm] $A^k=A=\pmat{ 1 & 0 \\ 0 & 0 }$ [/mm] für [mm] $k=1,\;2,\;3,\;\ldots$ [/mm]

[mm]B^1=B=\pmat{ 0 & 1 \\ 0 & 0 }[/mm] sowie:

[mm] $B^k=\pmat{0&0\\0&0}$ [/mm] für alle $k [mm] \in \IN_{\ge 2}$. [/mm]

Also folgt:
[mm]\exp(A)=\summe_{k=0}^{\infty}\frac{A^k}{k!}=\pmat{1 & 0 \\ 0 & 1}+\summe_{k=1}^{\infty}\frac{A^k}{k!}[/mm]

[mm]=\pmat{1 & 0 \\ 0 & 1}+\summe_{k=1}^{\infty}\left[\frac{1}{k!}*\pmat{ 1 & 0 \\ 0 & 0 }\right][/mm]

[mm]=\pmat{1 & 0 \\ 0 & 1}+\pmat{ \summe_{k=1}^\infty \frac{1^k}{k!} & 0 \\ 0 & 0 } =\pmat{1 & 0 \\ 0 & 1}+\pmat{ e-1 & 0 \\ 0 & 0 } =\pmat{e & 0 \\ 0 & 1}[/mm]

Weiter erhalten wir:
[mm] $\exp(B)=\summe_{k=0}^{\infty}\frac{B^k}{k!}$ [/mm]

[mm] $=\frac{B^0}{0!}+\frac{B^1}{1!}$ [/mm] (beachte, dass [mm] $B^k=\pmat{0&0\\0&0}$ [/mm] für alle $k [mm] \in \IN_{\ge 2}$) [/mm]

[mm] $=\pmat{1 & 0 \\ 0 & 1}+\pmat{0 & 1 \\ 0 & 0}=\pmat{1 & 1 \\ 0 & 1}$ [/mm]

Daraus folgt:

[mm] $\exp(A)*\exp(B)=\pmat{e & e \\ 0 & 1}$, [/mm] also das Gewünschte :-)!

Viele Grüße,
Marcel

Bezug
                
Bezug
exp: danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:38 Di 10.05.2005
Autor: LOLO

Hallo!

Danke für eure Erklärungen! Ich habs verstanden! :-)

Danke an die 3 M´s! :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]