matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungextrema
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differenzialrechnung" - extrema
extrema < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

extrema: aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:50 Mi 19.04.2006
Autor: van3ssa

Aufgabe
bestimmen sie die lokalen und globalen extremwerte der fkt. f im intervall 8-2,5;2,5).

[mm] f(x)=1/6x^3-1/2x [/mm]

kann mir mal jemand sagen, wie ich extrema bestimme?

        
Bezug
extrema: tipp
Status: (Antwort) fertig Status 
Datum: 12:52 Mi 19.04.2006
Autor: Amy1988

Hallo Vanessa,

also du brauchst die Bedingungen für Extrema, oder?
Sie lauten:
f´(x) = 0 und gleichzeitig muss f´´(x)  [mm] \not= [/mm] 0 sein.

Du musst deine Funktion jetzt also erstmal ableiten und dann f´(x) null setzen.

Bezug
        
Bezug
extrema: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:33 Mi 19.04.2006
Autor: SurvivalEddie

Hallo van3ssa!
zunächst solltest du den term umschreiben:

f(x) = [mm] 1/6*x^{-3}-1/2*x^{-1} [/mm]

jetzt kannst du einfacher ableiten:

f'(x) = [mm] -1/2*x^{-4}+1/2*x^{-2} [/mm]

jetzt musst du f'(x) = 0 setzen:

0= [mm] -0,5x^{-4}+0,5x^{-2} [/mm]
[mm] \gdw 0,5x^{-4} [/mm] = [mm] 0,5x^{-2} [/mm]
[mm] \gdw x^{-4} [/mm] = [mm] x^{-2} [/mm]              
[mm] \gdw x^{-4} [/mm] - [mm] x^{-2} [/mm] = 0          
[mm] \gdw x^{-2} [/mm] * ( [mm] x^{2} [/mm] - 1 )= 0  
[mm] \gdw x^{-2}=0 \vee x^{2} [/mm] - 1= 0  
[mm] \gdw [/mm] x=0     [mm] \vee x^{2} [/mm] = 1
[mm] \gdw [/mm] x=0     [mm] \vee [/mm]         x = 1         [mm] \vee [/mm]         x = -1

ich kann dein intervall leider nicht entziffern....du musst auf jeden fall schauen, welche dieser werte in deinem intervall liegen, das sind dann mögliche extrema!

nun musst du die 2.Ableitung bilden, die möglichen x-Werte in diese einsetzen wenn das ergebnis  [mm] \not=0 [/mm] ist, sind es tatsächlich extrema.

sollte dies nicht der fall sein, musst du schauen, ob an dieser stelle ein vorzeichenwechsel der 1.Ableitung vorhanden ist, also musst du schauen, ob der Graph VOR der x-Stelle steigt und DANACH fällt, oder andersrum.
Ist eins davon der Fall, ist es ein Extremum, wenn nicht, dann nicht (zum Beispiel ist es ein Sattelpunkt, wenn die Steigung davor dasselbe Vorzeichen hat wie die danach)

Ich hoffe das hilft dir weiter
GREETz
Dustin
  



Bezug
        
Bezug
extrema: Randextrema
Status: (Antwort) fertig Status 
Datum: 18:34 Mi 19.04.2006
Autor: Loddar

Hallo Vanessa!


Um die globalen Extrema zu bestimmen bzw. nachzuweisen, dass die relativen Extrema auch globale Extrema sind, musst Du auch noch die Funktionswerte der beiden Intervallränder bestimmen.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]