extremwertaufgaben < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:43 So 12.10.2008 | Autor: | tomwolfe |
Gegeben ist die Funktion $ [mm] f(x)=8-\bruch{1}{2}x^2 [/mm] $ mit $ x [mm] \in \IR [/mm] $
Die Tangente im Kurvenpunkt P( a | f(a) ) mit 0<a<4 bildet zusammen mit der x-y-Achse ein Dreieck.
Wie muss P gewählt werden, damit der Inhalt des Dreiecks extremal wird?
Bestimmen Sie die Art des Extremums.
wer kann mir eine lösung hierzu geben
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:57 So 12.10.2008 | Autor: | Loddar |
Hallo tomwolfe,
!!
Nur reine Lösungen gibt es hier nicht (siehe auch unsere Forenregeln).
Aber gemeinsam (mit Deine kräftigen Mitarbeit) können wir Dir gerne helfen.
Zunächst einmal solltest Du Dir eine Skizze machen, wie das beschriebene Dreieck überhaupt aussieht.
Dann soltest Du erkennen, dass es sich um ein rechtwinkliges Dreieck handelt, deren Katheten durch die Achsenabschnitte der Tangente gebildet werden.
Der Flächeninhalt dieses Dreiecks lautet dann:
[mm] $$A_{\Delta} [/mm] \ = \ [mm] \bruch{1}{2}*a*b [/mm] \ = \ [mm] \bruch{1}{2}*x_N*t(0)$$
[/mm]
Die allgemeine Tangentengleichung eine beliebigen Funktion im Punkt $P \ [mm] \left( \ a \ | \ f(a) \ \right)$ [/mm] lautet:
$$t(x) \ = \ f'(a)*(x-a)+f(a)$$
Bestimme also die Tangentengleichung mit der genannten Funktion und die zugehörigen Achsenabschnitte [mm] $x_N$ [/mm] bzw. $t(0)$ .
Gruß
Loddar
|
|
|
|