matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeextremwertproblem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Extremwertprobleme" - extremwertproblem
extremwertproblem < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

extremwertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:55 Mi 16.12.2009
Autor: sunny1991

Aufgabe
Welche Punkte auf dem Graphen der Funktion [mm] f(x)=\bruch{2}{x^{2}} [/mm] haben com Ursprung den kleinsten Abstand?

Hallo,
also bei der Aufgabe komme ich iwie nicht weiter.
Also mein Ansatz war, dass ich die Abstandsformel genommen habe. Der Ursprung ist ja 0(0|0) also bleibt für den Abstand: [mm] d^{2}=a^{2}+b^{2} [/mm] wobei a und b die koordinate des punktes ist. Hier sieht man ja dass das der Satz des Pythagoras ist. Aber wie muss ich denn jetzt weiter machen bzw. wo muss ich jezt die Formel einsetzen?
Wäre nett wenn mir da jemand helfen könnte.
Danke schon mal im voraus.
lg

        
Bezug
extremwertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 16:05 Mi 16.12.2009
Autor: fred97


> Welche Punkte auf dem Graphen der Funktion
> [mm]f(x)=\bruch{2}{x^{2}}[/mm] haben com Ursprung den kleinsten
> Abstand?
>  Hallo,
>  also bei der Aufgabe komme ich iwie nicht weiter.
> Also mein Ansatz war, dass ich die Abstandsformel genommen
> habe. Der Ursprung ist ja 0(0|0) also bleibt für den
> Abstand: [mm]d^{2}=a^{2}+b^{2}[/mm] wobei a und b die koordinate des

   der Abstand ist = [mm] \wurzel{a^2+b^2} [/mm]   !!!


> punktes ist. Hier sieht man ja dass das der Satz des
> Pythagoras ist. Aber wie muss ich denn jetzt weiter machen
> bzw. wo muss ich jezt die Formel einsetzen?
>  Wäre nett wenn mir da jemand helfen könnte.


Wie oben sei (a,b) ein Punkt auf dem Graphen von f, es ist also [mm] $b=\bruch{2}{a^2}$. [/mm] Damit ist der Abstand vom Ursprung

               $= [mm] \wurzel{a^2+\bruch{4}{a^4}}$ [/mm]

Gesucht ist also das Minimum der Funktion

             $d(a)= [mm] \wurzel{a^2+\bruch{4}{a^4}}$ [/mm]

Damit Du Dir das Leben nicht so schwer machst, kannst Du genausogut die Funktion

             $f(a)= [mm] d(a)^2= a^2+\bruch{4}{a^4}$ [/mm]

minimieren

FRED


>  Danke schon mal im voraus.
>  lg


Bezug
                
Bezug
extremwertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:08 Mi 16.12.2009
Autor: sunny1991

wie kommst du denn am anfang auf [mm] b=\bruch{2}{a^{2}}? [/mm]

Bezug
                        
Bezug
extremwertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 16:16 Mi 16.12.2009
Autor: Steffi21

Hallo, du hast ja den Punkt (a;b) setze jetzt a in deine Funktionsgleichung ein

[Dateianhang nicht öffentlich]

Steffi

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
extremwertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:20 Mi 16.12.2009
Autor: sunny1991

ja stimmt hab ich dann auch gemerkt.
so also ich hab jetzt abgeleitet und die funktion ist dann [mm] f'(a)=2a-\bruch{16}{a^{5}}.So [/mm] jetzt müsste ich ja eig nur noch den extrempunkt ausrechnen nur ich komm da iwie nicht drauf, weil ich ja [mm] a^{5} [/mm] und 2a habe und es sich ja nicht lohnt da zu substituieren. Wie komme ich denn jetzt auf den tiefpunkt?

Bezug
                        
Bezug
extremwertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 16:24 Mi 16.12.2009
Autor: M.Rex

Hallo

Du hast:

[mm] 2a-\bruch{16}{a^{5}}=0 [/mm]
[mm] \gdw 2a=\bruch{16}{a^{5}} [/mm]
[mm] \gdw 2a^{6}=16 [/mm]
[mm] \gdw a^{6}=8 [/mm]
[mm] \Rightarrow a=\wurzel[6]{8}=\wurzel[6]{2^{3}} [/mm]

Diesen Wert setze bitte so (also nicht als gerundete Dezimalzahl) in die 2. Ableitung ein (notwendige Bed). und in die Ausgangsabstandsfunktion.

Marius

Bezug
                                
Bezug
extremwertproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:28 Mi 16.12.2009
Autor: Steffi21

Noch ein kleiner Hinweis

[mm] a^{6}=8 [/mm]

es gibt zwei Lösungen, auch ein negatives a,

Steffi

Bezug
                                
Bezug
extremwertproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:30 Mi 16.12.2009
Autor: sunny1991

oh mann klar. heut stell ich aber auch nur doofe fragen;) egal vielen dank!

Bezug
                                
Bezug
extremwertproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:30 Mi 16.12.2009
Autor: fred97


> Hallo
>  
> Du hast:
>  
> [mm]2a-\bruch{16}{a^{5}}=0[/mm]
>  [mm]\gdw 2a=\bruch{16}{a^{5}}[/mm]
>  [mm]\gdw 2a^{6}=16[/mm]
>  [mm]\gdw a^{6}=8[/mm]
>  
> [mm]\Rightarrow a=\wurzel[6]{8}=\wurzel[6]{2^{3}}[/mm]
>  
> Diesen Wert setze bitte so (also nicht als gerundete
> Dezimalzahl)

So aber schon: $a= [mm] \wurzel{2}$ [/mm]

FRED


>  in die 2. Ableitung ein (notwendige Bed). und
> in die Ausgangsabstandsfunktion.
>  
> Marius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]