matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Eigenwertef-Invariante Unterräume
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Eigenwerte" - f-Invariante Unterräume
f-Invariante Unterräume < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

f-Invariante Unterräume: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:34 So 07.06.2009
Autor: dre1ecksungleichung

Hi.
Ich habe da eine Frage von etwas, das man zwar laut diversen Büchern "leicht einsieht", was mir aber noch nicht so klar ist.
Die Frage ist die folgende:

Sei Haup(f,t) Hauptraum von f zum Eigenwert t.
Im folgenden ist immer [mm] f:V\toV [/mm] linear
Dann gilt:
{0} = [mm] ker(f-t*id)^0 \subseteq [/mm] ker(f-t*id) [mm] \subseteq [/mm] ... [mm] \subseteq [/mm] Haup(f,t)
Warum gilt diese Kette? (Man findet sie so oder so ähnlich auch im Fischer bei der Einführung zur Jordan-Normalform)

Dann habe ich noch eine Frage zu dem folgenden Satz:

Seien [mm] h_1,h_2,...,h_k [/mm] Hauptvektoren von f zum Eigenwert t mit den Stufen [mm] s_1 \ge s_2 \ge [/mm] ... [mm] \ge s_k \ge [/mm] 1 so gegeben, dass
[mm] ((f-t*id)^{s_{j}-1})(h_{j}) [/mm] mit [mm] j\in [/mm] {1,...,k} eine linear unabhängige Familie ist. Dann ist die Familie der Vektoren [mm] c_{ij}:=((f-t*id)^{s_{j}-i})(h_j) [/mm] linear unabhängig, wobei [mm] \forall [/mm] j [mm] \in [/mm] {1,...k} der Index i in [mm] {1,...,s_j} [/mm] läuft.

Nun eine Anwendung dieses Satzes:
Sei  h ein Hauptvektor von f mit Stufe s zum Eigenwert t.
Setze [mm] b_i [/mm] := [mm] ((f-t*id)^{s-i})(h) [/mm] mit i [mm] \in [/mm] {1,...,s}
Sei h ein Hauptvektor von f mit Stufe s.
So soll nach dem obigen Satz eine Basis [mm] B:=(b_1,...,b_s) [/mm] eines f-invarianten Unterraumes Q von V vorliegen.

Doch ich verstehe nicht warum? Warum ist das ein Unterraum und warum ist der f-invariant? Ich denke es hängt mit meiner ersten Frage zusammen.
Kann mir jemand das anschaulich erklären? So 100% ist mir nämlich die Bedeutung des Satzes noch nicht klar.

Ich hoffe ihr könnt mir helfen. Das wäre echt super!
Gruß

        
Bezug
f-Invariante Unterräume: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Di 09.06.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]