matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysisfaktorielle
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - faktorielle
faktorielle < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

faktorielle: Frage
Status: (Übungsaufgabe) Übungsaufgabe Status 
Datum: 10:21 Di 16.11.2004
Autor: girlie0018

Ich habe diese Frage in keinem Forum auf anderen Internetseite gestellt.

Auf n Zellen sollen k Teilchen so verteilt werden, dass in der i-ten Zelle genau ki Teilchen liegen, wobei k1 + k2 + .... + kn = k sei. Wieviele verschiedene Verteilungen gibt es?

Auf n Zellen sollen k nicht unterscheidbare Teilchen so verteilt werden, dass jede Zelle höchstens ein Teilchen enthält. Wieviele verschiedene Verteilungen gibt es?


Auf n Zellen sollen k nicht unterscheidbare Teilchen beliebig verteilt werden. Wieviele verschiedene Verteilungen gibt es?


Wieviele k-Tupel(a1,a2,....,ak) paarweise verschiedener Zahlen a1, a2, ...., ak E {1,2,....,n} gibt es?

        
Bezug
faktorielle: Die Physik/Stochastik sagt:
Status: (Antwort) fertig Status 
Datum: 13:37 Di 16.11.2004
Autor: Holger81

Nunja, das sind ja jetzt drei bekannte Modelle aus der Physik.

Fall 1: Maxwell-Boltzmann
Fall 2: Fermi-Dirac
Fall 3: Bose-Einstein

Man kann sich nun die Räume überlegen:
[mm] (p_i [/mm] seien die Partikel, [mm] z_i [/mm] die Zellen)

Fall 1:
[mm] Omega = \{(z_1,...,z_n\} | \bigcup_{i=1}^{n}z_i = \{p_1,...,p_k\} ; |z_i| \in \{0,...,k\}; i=1,...,n \} [/mm]
Es gilt: [mm] |Omega| = n^k [/mm]

Fall 2:
[mm] Omega = \{(z_1,...,z_n)|z_i \in \{0,1\} ; i = 1,...,n ; \summe_{i=1}^{n} zi =k \} [/mm]
Es gilt: [mm] |Omega| = \vektor{n \\ k} [/mm]

Fall 3:
[mm] Omega = \{(z_1,...,z_n)|z_i \in \{0,..,k\} ; i = 1,...,n ; \summe_{i=1}^{n} zi = k\} [/mm]
Es gilt: [mm] |Omega| = \vektor{k+n-1 \\ k} [/mm]

Ich denke das sollte es sein, wenn wirklich nur Verteilungen gefragt sind.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]