matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheoriefaktorieller Ring
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Zahlentheorie" - faktorieller Ring
faktorieller Ring < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

faktorieller Ring: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:12 Di 22.11.2011
Autor: margarita

Aufgabe
Wie laesst sich 5 in [mm] \IZ[\wurzel{11}] [/mm]  faktorisieren?


Fuer 5 habe ich in dem oben genannten Ring zwei Faktorisierungen gefunden, naemlich
5 = (7 + [mm] 2\wurzel{11})(7 [/mm] - [mm] 2\wurzel{11}) [/mm] und
5 = (4 + [mm] \wurzel{11})(4 [/mm] - [mm] \wurzel{11}). [/mm]
Wie kann das sein, da [mm] \IZ[\wurzel{11}] [/mm] doch bekannterweise ein faktorieller Ring ist, dh
Zerlegung in Primfaktoren eindeutig. Wie laesst sich das erklaeren?
Vielen Dank schon im Voraus.

        
Bezug
faktorieller Ring: Antwort
Status: (Antwort) fertig Status 
Datum: 13:30 Di 22.11.2011
Autor: statler

Mahlzeit!

> Wie laesst sich 5 in [mm]\IZ[\wurzel{11}][/mm]  faktorisieren?
>  
> Fuer 5 habe ich in dem oben genannten Ring zwei
> Faktorisierungen gefunden, naemlich
> 5 = (7 + [mm]2\wurzel{11})(7[/mm] - [mm]2\wurzel{11})[/mm] und
> 5 = (4 + [mm]\wurzel{11})(4[/mm] - [mm]\wurzel{11}).[/mm]
> Wie kann das sein, da [mm]\IZ[\wurzel{11}][/mm] doch bekannterweise
> ein faktorieller Ring ist, dh
> Zerlegung in Primfaktoren eindeutig.

Bis auf Reihenfolge und Einheiten!

> Wie laesst sich das
> erklaeren?

Kannst du die Gl. [mm] \bruch{7+2\wurzel{11}}{4-\wurzel{11}} [/mm] = [mm] 10+3\wurzel{11} [/mm] nachvollziehen? Und fällt dir an ihr was auf? Dann hast du die Antwort.

Gruß aus HH-Harburg
Dieter


Bezug
                
Bezug
faktorieller Ring: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:41 Di 22.11.2011
Autor: margarita

Mahlzeit!

> > Fuer 5 habe ich in dem oben genannten Ring zwei
> > Faktorisierungen gefunden, naemlich
> > 5 = (7 + [mm]2\wurzel{11})(7[/mm] - [mm]2\wurzel{11})[/mm] und
> > 5 = (4 + [mm]\wurzel{11})(4[/mm] - [mm]\wurzel{11}).[/mm]
> > Wie kann das sein, da [mm]\IZ[\wurzel{11}][/mm] doch bekannterweise
> > ein faktorieller Ring ist, dh
> > Zerlegung in Primfaktoren eindeutig.
>
> Bis auf Reihenfolge und Einheiten!
>  
> > Wie laesst sich das
> >

>> Kannst du die Gl.
>>[mm]\bruch{7+2\wurzel{11}}{4-\wurzel{11}}[/mm] =
>> [mm]10+3\wurzel{11}[/mm]
>> nachvollziehen? Und fällt dir an ihr was
>> auf? Dann hast du die Antwort.

Ach sooo !!! :-) D.h. [mm] 7+2\wurzel{11} [/mm] ist gar nicht irreduzibel, sondern kann durch die Gleichung, die du angegeben hast, ausgedrueckt werden!
Damit ist es mir auch verstaendlich...
Super!! Jetzt macht es wieder Sinn. Vielen Dank fuer die rasche Antwort.

>  
> Gruß aus HH-Harburg
>  Dieter
>  

Gruss aus Griechenland, Dafni


Bezug
                        
Bezug
faktorieller Ring: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:47 Di 22.11.2011
Autor: statler


> >> Kannst du die Gl.
> >>[mm]\bruch{7+2\wurzel{11}}{4-\wurzel{11}}[/mm] =
>  >> [mm]10+3\wurzel{11}[/mm]

>  >> nachvollziehen? Und fällt dir an ihr was

> >> auf? Dann hast du die Antwort.
>  
> Ach sooo !!! :-) D.h. [mm]7+2\wurzel{11}[/mm] ist gar nicht
> irreduzibel, sondern kann durch die Gleichung, die du
> angegeben hast, ausgedrueckt werden!
>  Damit ist es mir auch verstaendlich...
>  Super!! Jetzt macht es wieder Sinn. Vielen Dank fuer die
> rasche Antwort.

Naja, eigentlich hätte dir auffallen sollen, daß [mm] 10+3\wurzel{11} [/mm] eine Einheit ist.

> Gruss aus Griechenland, Dafni

Interessant.

Dieter


Bezug
                                
Bezug
faktorieller Ring: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:17 Di 22.11.2011
Autor: margarita


> Naja, eigentlich hätte dir auffallen sollen, daß
> [mm]10+3\wurzel{11}[/mm] eine Einheit ist.

Okay, stimmt denn die Norm [mm] N(10+3\wurzel{11}) [/mm] =1.
Verstanden, danke nochmal

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]