matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungflaeche
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - flaeche
flaeche < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

flaeche: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:14 Mo 08.06.2009
Autor: tower

Aufgabe
bestimme die flaeche zwischen [mm] y=0, y=f(x)=\bruch{x^2}{a}, y=g(x)=\bruch{a}{x^2}[/mm] (a>0)

hallo,
um diese aufgabe zu loesen muss ich doch den schnittpunkt der beiden kurven f(x) und g(x) bestimmen, um die integrationsgrenze zu ermitteln?
f(x)=g(x)
[mm]\bruch{x^2}{a}=\bruch{a}{x^2}[/mm] --> [mm]x=\wurzel{a}[/mm]
mfg

        
Bezug
flaeche: 2 Schnittstellen
Status: (Antwort) fertig Status 
Datum: 19:21 Mo 08.06.2009
Autor: Loddar

Hallo tower!


> um diese aufgabe zu loesen muss ich doch den schnittpunkt
> der beiden kurven f(x) und g(x) bestimmen, um die
> integrationsgrenze zu ermitteln?

[ok]


> f(x)=g(x)
> [mm]\bruch{x^2}{a}=\bruch{a}{x^2}[/mm] --> [mm]x=\wurzel{a}[/mm]

Achtung: es gibt zwei Schnittstellen mit [mm] $x_{1/2} [/mm] \ = \ [mm] \red{\pm} [/mm] \ [mm] \wurzel{a}$ [/mm] .


Gruß
Loddar


Bezug
                
Bezug
flaeche: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:00 Mo 08.06.2009
Autor: tower

weiter soll ich bestimmen, fuer welchen wert von a schneiden sich die graphen von f(x) und g(x) rechtwinklig?
hier habe ich probleme die aufgabe zu interpretieren, ein tipp wäre super.

Bezug
                        
Bezug
flaeche: (edit.)
Status: (Antwort) fertig Status 
Datum: 20:15 Mo 08.06.2009
Autor: angela.h.b.


> weiter soll ich bestimmen, fuer welchen wert von a
> schneiden sich die graphen von f(x) und g(x) rechtwinklig?
>  hier habe ich probleme die aufgabe zu interpretieren, ein
> tipp wäre super.

Hallo,

Der Schnittwinkel ist der Winkel, den die Tangenten der Funktionen  (im Schnittpunkt) einschließen.

Die Steigung der Tangenten kannst Du berechnen. Wie?


Weiter solltest Du erinnern, daß zwei geraden senkrecht zueinander sind, wenn eine die Steigung m hat und die andere die Steigung [mm] -\bruch{1}{m}. [/mm]

Gruß v. Angela



Bezug
                                
Bezug
flaeche: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:35 Mo 08.06.2009
Autor: tower

um es zu kapieren habe ich mal eine skizze gemacht:
[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                                        
Bezug
flaeche: Antwort
Status: (Antwort) fertig Status 
Datum: 22:11 Mo 08.06.2009
Autor: Steffi21

Hallo, sehe ich deine Skizze, du hast doch keine Tangenten gezeichnet, ich habe mal die zwei Funktionen gezeichnet, in den Farben grün und rot, du erkennst weiterhin die zwei Tangenten in den Farben gelb und blau, diese Tangenten stehen rechtwinklig zueinander, somit schneiden sich die Funktionen rechtwinklig

[Dateianhang nicht öffentlich]

Steffi

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                                                
Bezug
flaeche: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:28 Di 09.06.2009
Autor: tower

dann bilde ich also die ableitung von f(x) und g(x) und setze fuer x den schnittpunkt ein:
[mm]m=f'(\wurzel{a})= \bruch{2\wurzel{a}}{a}=\bruch{2}{\wurzel{a}}[/mm]
und
[mm]m=g'(\wurzel{a})=- \bruch{2a\wurzel{a}}{(\wurzel{a})^4}=-\bruch{2}{\wurzel{a}}[/mm]
so sehen die steigungen schon mal ähnlich aus, was muss ich jetzt noch machen?

Bezug
                                                        
Bezug
flaeche: so geht's
Status: (Antwort) fertig Status 
Datum: 16:20 Di 09.06.2009
Autor: informix

Hallo tower,

Aufgabe
weiter soll ich bestimmen, fuer welchen wert von a schneiden sich die graphen von f(x) und g(x) rechtwinklig?  


> dann bilde ich also die ableitung von f(x) und g(x) und
> setze fuer x den schnittpunkt ein:
>  [mm]m=f'(\wurzel{a})= \bruch{2\wurzel{a}}{a}=\bruch{2}{\wurzel{a}}[/mm]
>  
> und
>  [mm]m=g'(\wurzel{a})=- \bruch{2a\wurzel{a}}{(\wurzel{a})^4}=-\bruch{2}{\wurzel{a}}[/mm]
>  
> so sehen die steigungen schon mal ähnlich aus, was muss ich
> jetzt noch machen?

Du suchst das $a_$ , für das gilt: [mm] f'(\wurzel{a})*g'(\wurzel{a})=-1 \gdw [/mm] f und g schneiden sich orthogonal


Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]