matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-Analysisflächeninhaltsberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Schul-Analysis" - flächeninhaltsberechnung
flächeninhaltsberechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

flächeninhaltsberechnung: habe eine frage zur aufgabe!
Status: (Frage) beantwortet Status 
Datum: 18:34 Mo 11.04.2005
Autor: massiver_ton

hallo,

ich habe diese frage in keinem anderen forum gestellt.
wir haben eine hausaufgabe auf und ich kann wirklich gar nichts!
es geht um flächeninhaltsberechnung.

wir haben den graphen [mm] f(x)=4-x^2 [/mm]                um den flächeninhalt zu berechnen, brauche ich ja die stammfunktion, die wäre 4x- [mm] \bruch{1}{3}x^3 [/mm]

aber ich kriege einfdach die grenzen nicht raus! also von wo bis wo oder welches integral ich habe. sorry, aber ich bin echt eine null in mathe....,-(

hui, leider kann ich hier ja keine graphen zeichnen lassen...also vielleicht könnte sich jemand ´ja den graphen zeichnen lassen. der graph schneidet die y-achse itrgendwo im negativen bereich. zwischen dem negativen bereich und der x-achse ist ein dreieck. die spitze des dreiecks ist am punkt O(0/0). die spitze links und rechts berühren den graphen. die punkte wurden A und B genannt.

nun die frage: a)Berechne den flächeninhalt des dreiecks ABO in abhängigkeit von x. 0<x<2

b) gibt es einen größten flächeninhalt?

vielen dank, falls sich jemand hier die mühe macht und sich das ganze anschaut. ihr seit meine letzte hoffnung, ich kanns wirklich nicht!
danke! und mfg, julia




        
Bezug
flächeninhaltsberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:49 Mo 11.04.2005
Autor: Max

Hallo Julia,

da war der Mathe-LK wohl die richtige Wahl *g*

Naja, die Grenzen sind die Nullstellen von [mm] $f(x)=4-x^2$! [/mm] Deine Stammfunktion ist richtig.

Wegen der Symmetrie der Funktion $f$ ist die zweite Aufgabe nicht so schwer, die Grundseite des Dreiecks liegt zwischen den Punkten $C(-x|f(-x))$ und $B(x|f(x))$, die Spitze bei $A(0|0)$. Dann kannst du recht leicht die Grundseite und Höhe durch $x$ und $f(x)$ ausdrücken und erhälst eine Funktion $A(x)$, die du mit der üblichen Methodik auf Hochpunkte untersuchst.

Gruß Max

Bezug
        
Bezug
flächeninhaltsberechnung: Graph und Tipps
Status: (Antwort) fertig Status 
Datum: 22:58 Mo 11.04.2005
Autor: informix

Hallo Julia,
da hat Max wohl nicht korrekt gelesen; aber auch im GK solltest du eine quadratische Gleichung lösen können.

>  
> ich habe diese frage in keinem anderen forum gestellt.
> wir haben eine hausaufgabe auf und ich kann wirklich gar
> nichts!
>  es geht um flächeninhaltsberechnung.
>  
> wir haben den graphen [mm]f(x)=4-x^2[/mm]                um den
> flächeninhalt zu berechnen, brauche ich ja die
> stammfunktion, die wäre 4x- [mm]\bruch{1}{3}x^3[/mm]
>  
> aber ich kriege einfdach die grenzen nicht raus! also von
> wo bis wo oder welches integral ich habe. sorry, aber ich
> bin echt eine null in mathe....,-(

Die Grenzen werden durch die Nullstellen der Funktion f bestimmt, also:
$f(x) = 0 = [mm] 4-x^2 [/mm] = (2-x)(2+x)$
Kannst du nun die Grenzen ablesen?!
  

> hui, leider kann ich hier ja keine graphen zeichnen
> lassen...

doch: erstelle den Graphen mit []FunkyPlot, speichere ihn als .png-Grafik auf deinem Rechner und füge ihn als Anhang-Bild ein:
[Dateianhang nicht öffentlich]

> also vielleicht könnte sich jemand ´ja den graphen
> zeichnen lassen. der graph schneidet die y-achse itrgendwo
> im negativen bereich. [notok]

Es ist doch eine nach unten geöffnete Parabel!

> zwischen dem negativen bereich und
> der x-achse ist ein dreieck. die spitze des dreiecks ist am
> punkt O(0/0). die spitze links und rechts berühren den
> graphen. die punkte wurden A und B genannt.
>  

Wenn du nun die Hinweise von Max beachtest, solltest du die Aufgabe lösen können. :-)

> nun die frage: a)Berechne den flächeninhalt des dreiecks
> ABO in abhängigkeit von x. 0<x<2
>  
> b) gibt es einen größten flächeninhalt?
>  
>  

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]