folge grenzwert < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 09:13 Do 26.03.2009 | Autor: | AriR |
hey leute hab mal ne etwas dumme frage.
wenn man die folge [mm] \bruch1n [/mm] in [mm] (-\infty;-1]\cup(0,\infty) [/mm] betrachtet, gegen was konvergiert diese folge dann eigentlich bzw konvergiert sie überhaupt? die 0 ist ja nicht mit drin. konvergiert sie dann gegen -1, weil das in unserem fall die "nächste" zahl nach der 0 ist oder divergiert sie? kann mir da vllt jemand weiterhelfen?
danke ;)
|
|
|
|
> hey leute hab mal ne etwas dumme frage.
>
> wenn man die folge [mm]\bruch1n[/mm] in [mm](-\infty;-1]\cup(0,\infty)[/mm]
> betrachtet, gegen was konvergiert diese folge dann
> eigentlich bzw konvergiert sie überhaupt? die 0 ist ja
> nicht mit drin. konvergiert sie dann gegen -1, weil das in
> unserem fall die "nächste" zahl nach der 0 ist oder
> divergiert sie? kann mir da vllt jemand weiterhelfen?
Die Redeweise "die Folge [mm] $(a_n)_{n\in \IN}$ [/mm] konvergiert" ist halt sehr verkürzt. Man müsste auch noch sagen, in welcher Grundmenge die fragliche Folge konvergiert. Wenn Du also die Konvergenz der Folge [mm] $a_n [/mm] := 1/n$ in einer Teilmenge von [mm] $\IR$ [/mm] betrachtest, die $0$ nicht enthält, so konvergiert diese Folge nicht gegen ein Element dieser Grundmenge: sie konvergiert in dieser Grundmenge nicht .
Man kann es auch so sagen: die Folge konvergiert in [mm] $\IR$, [/mm] aber sie konvergiert nicht gegen ein Element von [mm] $\IR\backslash\{0\}$.
[/mm]
Solche Fälle sind auch überhaupt nicht selten. So konvergieren alle in [mm] $\IR$ [/mm] konvergenten Folgen von rationalen Zahlen, die gegen eine Zahl aus [mm] $\IR\backslash\IQ$ [/mm] konvergieren, zwar in [mm] $\IR$, [/mm] nicht aber in [mm] $\IQ$.
[/mm]
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 09:42 Do 26.03.2009 | Autor: | AriR |
das liegt auch nur daran, dass man die epsilon bei der überprüfung der konvergenz beliebig klein in [mm] \IR [/mm] wählen darf oder?
es wird ja immer gesagt, dass eps>0 sein soll, aber zu welcher grundmenge eps gehört nie, aber da die eps umgebungen immer offen sind, würde nichts anderes als [mm] \IR [/mm] sinn ergeben oder?
|
|
|
|
|
> das liegt auch nur daran, dass man die epsilon bei der
> überprüfung der konvergenz beliebig klein in [mm]\IR[/mm] wählen
> darf oder?
> es wird ja immer gesagt, dass eps>0 sein soll, aber zu
> welcher grundmenge eps gehört nie, aber da die eps
> umgebungen immer offen sind, würde nichts anderes als [mm]\IR[/mm]
> sinn ergeben oder?
Richtig, [mm]\varepsilon > 0[/mm] bedeutet nichts anderes als [mm]\varepsilon \in \IR^+[/mm]
MfG,
Gono.
|
|
|
|
|
> das liegt auch nur daran, dass man die epsilon bei der
> überprüfung der konvergenz beliebig klein in [mm]\IR[/mm] wählen
> darf oder?
> es wird ja immer gesagt, dass eps>0 sein soll, aber zu
> welcher grundmenge eps gehört nie, aber da die eps
> umgebungen immer offen sind, würde nichts anderes als [mm]\IR[/mm]
> sinn ergeben oder?
Es würde sich am Konvergenzbegriff nichts wesentliches ändern, wenn man in der Definition von "Konvergenz" [mm] $\varepsilon>0$ [/mm] auf positive rationale Zahlen, also Elemente von [mm] $\IQ^{+}$ [/mm] einschränken würde. Das liegt daran, dass es zu jeder reellen Zahl [mm] $\varepsilon_{\IR}>0$ [/mm] eine rationale Zahl [mm] $\varepsilon_{\IQ}\in \IQ$ [/mm] mit [mm] $\varepsilon_{\IR}>\varepsilon_{\IQ}>0$ [/mm] gibt.
Der Grund, weshalb Folgen rationaler Zahlen [mm] $(a_n)_{n\in\IN}$ [/mm] mit Limes $a := [mm] \lim_{n\rightarrow\infty} a_n\in \IR\backslash\IQ$ [/mm] in der Grundmenge [mm] $\IQ$ [/mm] selbst nicht konvergieren, hat also - entgegen Deiner Vermutung - rein gar nichts damit zu tun, dass in der üblichen Formulierung der Konvergenz ein [mm] $\varepsilon>0$ [/mm] aus [mm] $\IR$ [/mm] zugelassen wird [mm] ($\varepsilon>0$ [/mm] aus [mm] $\IQ$ [/mm] würde es auch tun): diese Folgen konvergieren in [mm] $\IQ$ [/mm] nicht, weil es nach unserer Voraussetzung über [mm] $(a_n)_{n\in\IN}$ [/mm] kein Element [mm] $\red{a}$ [/mm] in [mm] $\red{\IQ}$ [/mm] gibt (sehr wohl aber eines in [mm] $\IR$!), [/mm] für das Du zeigen kannst, dass es für alle [mm] $\varepsilon>0$ [/mm] (meinetwegen alle [mm] $\varepsilon\in \IQ^{+}$) [/mm] ein [mm] $n_0\in\IN$ [/mm] gibt, so dass für alle [mm] $n\in\IN$ [/mm] mit [mm] $n>n_0$ [/mm] gilt: [mm] $|a-a_n|<\varepsilon$
[/mm]
|
|
|
|