matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale Funktionenganzrationale funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Ganzrationale Funktionen" - ganzrationale funktionen
ganzrationale funktionen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ganzrationale funktionen: aufgabe 3
Status: (Frage) beantwortet Status 
Datum: 19:08 Mi 28.03.2007
Autor: girl

Aufgabe
Eine Parabel P verläuft symmetrisch zur y-Achse durch die punkte A(1/0,5) und B (-2/-5,5).
Bestimmen Sie die Gleichung der Parabel.

hier weiß ich leider gar nicht, wie ich anfangen soll.
habs mit der formel:ax²+bx+c probiert..bin aber nicht weit gekommen!
gruß girl

        
Bezug
ganzrationale funktionen: Du gesuchte Funktion
Status: (Antwort) fertig Status 
Datum: 19:37 Mi 28.03.2007
Autor: barsch

Hi,

ich wills mal versuchen:

In der Schule hieß es immer, man erkenne Achsensymmetrie (Symmetrie zur y-Achse) an der Art der Exponenten. Bei durchweg geraden Exponenten (also 0, 2, 4,...) ist eine Funktion Achsensymmetrisch.

Parabel, lässt [mm] x^{2} [/mm] als x mit dem höchsten Exponenten vermuten.

Du hast zwei Punkte, was desweiteren für die Vorgehensweise spricht. Also,

[mm] ax^{2}+bx^{1}+cx^{0}=ax^{2}+bx+c=f(x) [/mm] ist richtig und Folgerung aus der Information, dass es sich um eine Parabel handelt.

Da du weißt, dass die Funktion Achsensymmetrisch sein soll, also fallen Parameter mit ungeraden Exponenten weg:

Von [mm] f(x)=ax^{2}+ bx^{1} +cx^{0} [/mm] bleibt dann noch [mm] f(x)=ax^{2}+c, [/mm] da [mm] bx^{1} [/mm] ungeraden Exponent besitzt.

Desweiteren hast du zwei Punkte und zwei Parameter/Unbekannte.

Wunderbar :-)

Also...,

A(1/0,5) und B (-2/-5,5)

[mm] f(1)=a*1^{2}+c=0,5 [/mm] und

[mm] f(-2)=a*(-2)^{2}+c=-5,5 [/mm]


Das heißt,  

a+c=0,5 und
4a+c=5,5.

Gauß:  .... [mm] c=-\bruch{7}{6} [/mm] ; [mm] a=\bruch{5}{3} [/mm]


Die gesuchte Funtkion mit den oben genannten Eigenschaften lautet:

[mm] f(x)=\bruch{5}{3}*x^{2}-\bruch{7}{6} [/mm]

MfG

Bezug
                
Bezug
ganzrationale funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:09 Mi 28.03.2007
Autor: girl

okay, alles klar! vielen dank! dann müssen, dann fallen wenn ichs richtig verstanden hab ímmer alle ungeraden exponenten weg. und dann setzt man die Punkte einfach ein!?

gruß girl

Bezug
                        
Bezug
ganzrationale funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:11 Mi 28.03.2007
Autor: Informacao

Ja, wenn du weißt, dass eine Fkt. achsensymmetrisch ist, dann fallen die ungeraden Exponenten deiner allgemeinen Fkt.gleichung raus.
Wenn sie punktsymmetrisch ist, dann fallen die geraden Exponenten raus.
LG Informacao

Bezug
                                
Bezug
ganzrationale funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:17 Mi 28.03.2007
Autor: girl

vielen dank! gruß girl

Bezug
        
Bezug
ganzrationale funktionen: Korrektur
Status: (Antwort) fertig Status 
Datum: 20:06 Mi 28.03.2007
Autor: Konrad_CS

Meiner bescheidenen Meinung nach müsste die Funktion eher [mm] f(x)=-2x^2+2,5 [/mm] heißen.
0,5 = a + c
-5,5 = 4a + c

Daraus ergibt sich für a = -2 und für c = 2,5.

Bezug
                
Bezug
ganzrationale funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:18 Mi 28.03.2007
Autor: girl

okay..soweit hab ichs auch verstanden. aber wie kommst du auf die funktion?? also auf a=-2 und c=2,5

Bezug
                        
Bezug
ganzrationale funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:27 Mi 28.03.2007
Autor: Konrad_CS

Also:

I: 0,5 = a + c  / * (-1)
I: -0,5 = -a - c

I+II)

I:   -0,5 = -a - c
II:  -5,5 = 4a + c

     -6,0 = 3a   / :3
     -2,0 = a

einsetzen in I:

0,5 = -2 + c      / +2
2,5 = c

Und wenn ich jetzt n Fehler gemacht hab, soll mich ein Fuchs beißen. Aber die Probe stimmt ;).

Bezug
                                
Bezug
ganzrationale funktionen: Sorry
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:28 Mi 28.03.2007
Autor: barsch

hi,

sorry, girl. Ich habe bei meinem Gauß-Verfahren den einen Punkt falsch beziffert: Ich habe das - vor 5,5 beim rechnen vergessen.

Konrad_CS hat recht. Sorry, aber ansonsten wars ja richtig :-)

Der Weg ist das Ziel :-)

Sorry nochmal.

MfG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]