matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnunggebrochen rationale Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - gebrochen rationale Funktion
gebrochen rationale Funktion < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gebrochen rationale Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:06 Do 23.08.2007
Autor: Fuchsschwanz

Hallo!

Habe eine Frage zu folgender Funktion:
[mm] \bruch{3x^2}{9x^3+18} [/mm]


Wenn ich diese nach dem ich ausgekürzt habe integriere , bekomme ich 1/9 [mm] ln(x^3+2) [/mm] heraus, integriere ich ohne vorheriges auskürzen erhalte ich 1/9 [mm] ln(9x^3+18)…Woran [/mm] leigt dass, bei diesem Typ aufgabe immer alles auskürzen, wenn ja warum?

Wäre super, wenn mir jmd antwortet 


        
Bezug
gebrochen rationale Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:12 Do 23.08.2007
Autor: Bastiane

Hallo Fuchsschwanz!

> Habe eine Frage zu folgender Funktion:
> [mm]\bruch{3x^2}{9x^3+18}[/mm]
>  
>
> Wenn ich diese nach dem ich ausgekürzt habe integriere ,
> bekomme ich 1/9 [mm]ln(x^3+2)[/mm] heraus, integriere ich ohne
> vorheriges auskürzen erhalte ich 1/9 [mm]ln(9x^3+18)…Woran[/mm]
> leigt dass, bei diesem Typ aufgabe immer alles auskürzen,
> wenn ja warum?

Was hast du denn da gekürzt? Das einzige, was du kürzen kannst, ist mit 3. Und leider sind beide deine Ergebnisse nicht richtig - wenn du deinen Rechenweg postest, können wir vielleicht die Fehler finden. Es ist egal, wie du es berechnest, es muss immer dasselbe rauskommen. :-)

Viele Grüße
Bastiane
[cap]

Bezug
        
Bezug
gebrochen rationale Funktion: Integrationskonstante
Status: (Antwort) fertig Status 
Datum: 21:18 Do 23.08.2007
Autor: Loddar

Hallo Fuchsschwanz!


Dein 1. Ergebnis ist falsch. Das zweite Ergebnis (ohne Kürzen) ist richtig.

Aber auch mit Kürzen (und zwar die 3, wie Bastiane schon schrieb) erhältst Du ein 2. Ergebnis.

Allerdings unterscheiden sich diese beiden Lösungen lediglich um einen konstanten Summanden, der bei unbestimmten Integralen als Integrationskonstante unerläßlich ist.

Dieser Unterschied lässt sich durch Anwendung der MBLogarithmusgesetze zeigen:

[mm] $\ln[a*f(x)] [/mm] \ = \ [mm] \ln(a)+\ln[f(x)]$ [/mm]

Denn der Loagrithmus einer konstanten Zahl $a_$ ist wiederum auch konstant.


Gruß
Loddar


Bezug
                
Bezug
gebrochen rationale Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:19 Fr 24.08.2007
Autor: Fuchsschwanz

Hallo!

Super, danke für eure antwort...;-) man sollte mal wieder in doe Log gesetze schauen...
habe noc ne weitere Frage, thematisch hierzu gehörig...
[mm] \bruch{x-3}{(x-1)^2} [/mm]

Diese Funktion würde ich über substitution lösen...wäre es auch möglich die Fkt als Produkt zu schreiben und dann partielle Integration? Habs versucht bekomme aber anderes ergebnis...kann ich mla wieder nicht rechnen oder spricht etw gegen diesen weg?

Lg

Bezug
                        
Bezug
gebrochen rationale Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:30 Fr 24.08.2007
Autor: Somebody


> Hallo!
>  
> Super, danke für eure antwort...;-) man sollte mal wieder
> in doe Log gesetze schauen...
>  habe noc ne weitere Frage, thematisch hierzu gehörig...
>  [mm]\bruch{x-3}{(x-1)^2}[/mm]
>  
> Diese Funktion würde ich über substitution lösen...wäre es
> auch möglich die Fkt als Produkt zu schreiben und dann
> partielle Integration? Habs versucht bekomme aber anderes
> ergebnis...kann ich mla wieder nicht rechnen oder spricht
> etw gegen diesen weg?

Vielleicht ist es ja eine hübsche Übung in partiellem Integrieren, wer weiss:

[mm]\int\underset{\downarrow}{(x-3)}\cdot\underset{\uparrow}{\frac{1}{(x-1)^2}}\; dx=-(x-3)\frac{1}{x-1}+\int\frac{1}{x-1}\;dx=-1+\frac{2}{x-1}+\ln|x-1|+C[/mm]


Substitution $u := x-1$ ist aber meiner Meinung nach der üblichere Weg:

[mm]\int \frac{x-3}{(x-1)^2}\; dx = \int \frac{(x-1)-2}{(x-1)^2}\; dx=\int\frac{1}{x-1}\; dx-2\int\frac{1}{(x-1)^2}\; dx = \ln|x-1|+\frac{2}{x-1}+C[/mm]

Dass beim partiellen Integrieren noch zusätzlich zu $C$ die Konstante $-1$ auftritt ist natürlich unerheblich, da die Stammfunktion ohnehin nur bis auf eine additive Konstante bestimmt ist.



Bezug
                        
Bezug
gebrochen rationale Funktion: hier geht auch partiell
Status: (Antwort) fertig Status 
Datum: 13:47 Fr 24.08.2007
Autor: Loddar

Hallo Fuchsschwanz!


Es ist zwar für gebrochen-rationale Funktionen ein eher ungewöhnlicher Weg ... aber hier funktioniert auch tatsächlich die partielle Integration mit $u \ := \ x-3$ sowie $v' \ := \ [mm] (x-1)^{-2}$ [/mm] .


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]