matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-Sonstigesgemeinsame Punkte einer Schar
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Analysis-Sonstiges" - gemeinsame Punkte einer Schar
gemeinsame Punkte einer Schar < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gemeinsame Punkte einer Schar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:10 Do 12.04.2007
Autor: philipp-100

Hallo,

ich soll mit der Schar
f(x)= [mm] e^-x*(x^2+2*x+a) [/mm] arbeiten.
DIe Fragestellung lautet:
Überprüfe ob verschiedene Funktionsgrafen der Schar gemeinsame Punkte haben.

WIe soll man das angehen ?
Man könnte f(x)=f(x-a) setzen?
Ich brauche aber ein Verfahren was man immer anwenden kann.
Hat jemand ne Ahnung wie man sowas beweist?
danke
Philipp


        
Bezug
gemeinsame Punkte einer Schar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:17 Do 12.04.2007
Autor: Steffi21

Hallo,

deine Funktion ist nicht ganz eindeutig geschrieben:
1. Variante: [mm] f(x)=e^{-x(x^{2}+2x+a)} [/mm]
2. Varinate: [mm] f(x)=e^{-x}*(x^{2}+2x+a) [/mm]

ich vermute Variante 1, dann ist der gemeinsame Punkt P(0; 1)

Steffi


Bezug
                
Bezug
gemeinsame Punkte einer Schar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:28 Do 12.04.2007
Autor: philipp-100

endschuldigung,
ich meinte die Funktion
[mm] f(x)=(e^-x)*(x^2+2*x+a) [/mm]
also die 2 Version
und wie gesagt, dann muss ich überprüfen ob verschiedene FUnktionsgraphen gemeinsame Punkte haben.
Wäre super nett, wenn ihr mir den Lösungsweg anstatt des Ergbeisses sagen könntet
Danke

Bezug
        
Bezug
gemeinsame Punkte einer Schar: Antwort
Status: (Antwort) fertig Status 
Datum: 18:39 Do 12.04.2007
Autor: Mary15


> Hallo,
>  
> ich soll mit der Schar
>  f(x)= [mm]e^-x*(x^2+2*x+a)[/mm] arbeiten.
>  DIe Fragestellung lautet:
>  Überprüfe ob verschiedene Funktionsgrafen der Schar
> gemeinsame Punkte haben.
>  
> WIe soll man das angehen ?
>  Man könnte f(x)=f(x-a) setzen?
>  Ich brauche aber ein Verfahren was man immer anwenden
> kann.
>  Hat jemand ne Ahnung wie man sowas beweist?
>  danke
>  Philipp
>  

Hi,
du kannst zwei beliebigen Funktionen von der Schar gleichsetzen: [mm] f_{a}(x) [/mm] und [mm] f_{a+1}(x) [/mm]
[mm] e^{-x}(x^2+2x+a) [/mm] = [mm] e^{-x}(x^2+2x+a+1) [/mm]
[mm] e^{-x}(x^2+2x+a-x^2-2x-a-1) [/mm] = 0
[mm] -e^{-x} [/mm] = 0 geht nicht, da [mm] e^{-x} \not= [/mm] 0 ist.
Je nach dem wie groß a ist bleibt in zweiter Klammer immer eine Zahl.
Also die Funktionen haben keine gemeinsame Punkte


Bezug
                
Bezug
gemeinsame Punkte einer Schar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:46 Do 12.04.2007
Autor: philipp-100

super, danke Mary,

so hatt ich es mir auch zuerst überlegt,
ist es denn ausreichend ? oder müsste man anstatt a+1 nicht besser a+c nehmen, damit man nachweisen kann, dass es für wirklich alle Funktionen gilt?
Wie sähe die Gleichung denn aus, wenn es Schnittpunkte gäbe?
Kennst du ein Beispiel?
DAnke für die Mühe

Bezug
                        
Bezug
gemeinsame Punkte einer Schar: Antwort
Status: (Antwort) fertig Status 
Datum: 19:04 Do 12.04.2007
Autor: Kroni

Hi,
du kannst auch einfach schreiben

[mm] a_{1} [/mm] und [mm] a_{2}, [/mm] und dann zeigst du, dass die Funktionen nicht gleich sind.

Gäbe es einen gemeinsamen Schnittpunkt, so müsste man ja x= irgendetwas unabhängig von a ergeben.

Eine Funktionsschar, die einen gemeinsmen Schnittpunkt hat, wäre z.B.

[mm] f_{a}(x)=(x-3)(x+a) [/mm]
Nämlich genau bei P(3;0) (denn diese Nullstelle ist ja unabhängig von a).

Das ganze kannste dann einmal "per Hinsehen" machen, oder einmal, indem man gleichsetzt.

Viele Grüße

Kroni

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]