matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10gemischtquadratische gleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathe Klassen 8-10" - gemischtquadratische gleichung
gemischtquadratische gleichung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gemischtquadratische gleichung: Frage
Status: (Frage) beantwortet Status 
Datum: 20:38 Mo 08.11.2004
Autor: silli

Hallo,
wer kann mir helfen die Bruchgleichung zu lösen.
Schreibe morgen eine mathearbeit und blicks nicht.
[mm] \bruch{x+1}{3x}- \bruch{2-x}{4x}= \bruch{x²+2}{6x} [/mm]
Danke
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
gemischtquadratische gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:46 Mo 08.11.2004
Autor: Fugre


> Hallo,
>  wer kann mir helfen die Bruchgleichung zu lösen.
>  Schreibe morgen eine mathearbeit und blicks nicht.
>   [mm]\bruch{x+1}{3x}- \bruch{2-x}{4x}= \bruch{x²+2}{6x} [/mm]
>  
> Danke
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  

Hallo Silli,

dann versuchen wir es mal.
Anfangen sollten wir mit dem Definitionsbereich. Dazu sollten wir nach Definitionslücken suchen,
die dann vorhanden sind, wenn ein Nenner 0 ist. Also überprüfen wir dies bei unser Gleichung
und sehen sofort, dass nur dann mindestens ein Zähler (hier sogar alle) 0 werden, wenn x=0 ist.
Für unseren Definitionsbereich bedeutet dies, dass er die gesamten reellen Zahlen beinhaltet außer der 0.

Wir schreiben: $ [mm] \|D [/mm] = [mm] \R \setminus [/mm] 0 $

Gut, jetzt wenden wir uns der eigentlichen Aufgabe zu und versuchen zuerst das,
was uns am meisten stört rauszuschmeißen, die Brüche.
Deshalb suchen wir nach dem kgV der Nenner und erhalten $ 12x $ als solches.

$ [mm] \bruch{x+1}{3x}- \bruch{2-x}{4x}= \bruch{x²+2}{6x} [/mm] $ also beide Seiten werden mit $ 12x $ multipliziert
$ [mm] 4(x+1)-3(2-x)=2(x^2+2) [/mm] $ dann fassen wir das ganze mal zusammen und bringen es auf eine Seite
$ [mm] 2x^2-7x+6=0 [/mm] $ nun teilen wir das ganze noch durch 2, damit wir es in die PQ-Formel einsetzen können
$ [mm] x^2-3,5x+3=0 [/mm] $

Nun wenden wir die PQ-Formel an und erhalten als mögliche Lösungen 1,5 und 2. Bei diesen Möglichkeiten überprüfen wir noch
schnell ob sie Teil des Definitionsbereiches sind und freuen uns, dass sie es sind.
Zu guter Letzt schreiben wir noch unser Ergebnis: $ [mm] \IL [/mm] = [mm] \{1,5 ; 2} [/mm] $

Ich hoffe, dass ich dir helfen konnte und wünsche dir viel Glück, aber noch mehr Erfolg in deiner Arbeit.

Liebe Grüße
Fugre

Bezug
                
Bezug
gemischtquadratische gleichung: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:01 Mo 08.11.2004
Autor: silli

Danke, du bist einfach genial

Liebe Grüße
Silli

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]