matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionengenau eine reelle Lsg zeigen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionen" - genau eine reelle Lsg zeigen
genau eine reelle Lsg zeigen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

genau eine reelle Lsg zeigen: Tipp
Status: (Frage) beantwortet Status 
Datum: 23:07 Do 06.02.2014
Autor: Lisa641

Aufgabe
Zeigen Sie:

Die Gleichung sin(x) = 1- [mm] x^{2} [/mm] besitzt in [mm] [0,\bruch{\pi}{2}] [/mm] genau eine reelle Lösung (Tipp: Monotonie)

Hallo zusammen,

ich habe diese Aufgabe zu lösen, aber ich weiß leider nicht wie sie mit Verwendung der Monotonie gelöst werden soll. Könnte mir jemand vielleicht einen Tipp geben? Danke!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
genau eine reelle Lsg zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:37 Do 06.02.2014
Autor: DieAcht

Hallo,


> Zeigen Sie:
>  
> Die Gleichung sin(x) = 1- [mm]x^{2}[/mm] besitzt in
> [mm][0,\bruch{\pi}{2}][/mm] genau eine reelle Lösung (Tipp:
> Monotonie)
>  Hallo zusammen,
>
> ich habe diese Aufgabe zu lösen, aber ich weiß leider
> nicht wie sie mit Verwendung der Monotonie gelöst werden
> soll. Könnte mir jemand vielleicht einen Tipp geben?
> Danke!

Betrachte die folgende Abbildung:

      [mm] I:=[0,\frac{\pi}{2}]\to\IR [/mm] mit [mm] f(x):=\sin(x)+x^2-1 [/mm]

Die Abbildung $f$ ist offenbar stetig.

Weiterhin gilt folgendes:

      $f(0)=-1<0$

      [mm] $f(\frac{\pi}{2})>0$ [/mm]

Was gilt nun? Wenn du das hast, dann denk an den Tipp.


Gruß
DieAcht

Bezug
                
Bezug
genau eine reelle Lsg zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:48 Do 06.02.2014
Autor: Lisa641

Vielen Dank für die schnelle Antwort!
Wir haben jetzt nach dem ZWS ein Intervall gefunden worin ein Vorzeichenwechsel stattfindet. Für x=0 monoton fallend und für x= [mm] \pi [/mm] monoton steigend. Daher müsste es nach dem ZWS eine Nullstelle der Funktion geben im Intervall [mm] x_{0}\in (0,\pi). [/mm]
Stimmt das denn so? Wie kann ich nun von [mm] \pi [/mm] auf [mm] \bruch{\pi}{2} [/mm] schließen?

Bezug
                        
Bezug
genau eine reelle Lsg zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:54 Do 06.02.2014
Autor: DieAcht

Hallo,


> Vielen Dank für die schnelle Antwort!
>  Wir haben jetzt nach dem ZWS ein Intervall gefunden worin
> ein Vorzeichenwechsel stattfindet. Für x=0 monoton fallend
> und für x= [mm]\pi[/mm] monoton steigend.

Nein, wie kommst du denn auf die Monotonie?

Zeige, dass die Funktion auf [mm] $I:=[0,\frac{\pi}{2}]$ [/mm] streng monoton wächst.

> Daher müsste es nach dem
> ZWS eine Nullstelle der Funktion geben im Intervall
> [mm]x_{0}\in (0,\pi).[/mm]

Sorry, ich meinte natürlich, dass folgendes gilt:

      $f(0)<0$ und [mm] $f(\frac{\pi}{2})>0$ [/mm]

Damit existiert mindestens eine Nullstelle in [mm] (0,\frac{\pi}{2}). [/mm]

>  Stimmt das denn so? Wie kann ich nun von
> [mm]\pi[/mm] auf [mm]\bruch{\pi}{2}[/mm] schließen?

Jetzt denk nochmal an den Tipp.


Gruß
DieAcht

Bezug
                        
Bezug
genau eine reelle Lsg zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:58 Do 06.02.2014
Autor: reverend

Hallo Lisa,

> Vielen Dank für die schnelle Antwort!
>  Wir haben jetzt nach dem ZWS ein Intervall gefunden worin
> ein Vorzeichenwechsel stattfindet. Für x=0 monoton fallend
> und für x= [mm]\pi[/mm] monoton steigend.

[haee]

> Daher müsste es nach dem
> ZWS eine Nullstelle der Funktion geben im Intervall
> [mm]x_{0}\in (0,\pi).[/mm]

Nein, die Monotonie ist hier (noch) nicht interessant. Es genügen die beiden Funktionswerte und die Stetigkeit.

>  Stimmt das denn so? Wie kann ich nun von
> [mm]\pi[/mm] auf [mm]\bruch{\pi}{2}[/mm] schließen?

Gar nicht.
Besser, Du berechnest mal den Funktionswert von [mm] f(x)=\sin{x}+x^2-1 [/mm] an der Stelle [mm] x=\br{\pi}{2}. [/mm]

Dann sagt Dir der ZWS immer noch, dass es mindestens eine Nullstelle in [mm] \left[0,\br{\pi}{2}\right] [/mm] gibt.

Der Tipp mit der Monotonie ist eigentlich nur dann hilfreich, wenn Du nun auch noch zeigst, dass es genau eine Nullstelle im untersuchten Intervall gibt.

Dazu ist aber mindestens noch ein Schritt mehr nötig...

Grüße
reverend

Bezug
                                
Bezug
genau eine reelle Lsg zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:09 Fr 07.02.2014
Autor: Lisa641

Also müsste ich noch zeigen das die f(x) streng monoton steigend bzw. fallend ist? Denn genau dann, besitzt sie im Intervall genau eine Lsg??

Bezug
                                        
Bezug
genau eine reelle Lsg zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:41 Fr 07.02.2014
Autor: reverend

Hallo Lisa,

> Also müsste ich noch zeigen das die f(x) streng monoton
> steigend bzw. fallend ist? Denn genau dann, besitzt sie im
> Intervall genau eine Lsg??

Ja, genau.

Das ist zwar (gefühlt) nahezu offensichtlich, aber trotzdem nicht so einfach zu zeigen, wie man denkt.

Allein mit der ersten Ableitung wirst Du jedenfalls nicht "mal eben" hinkommen.

Probiers mal und zeig, wie weit Du kommst.

Grüße
reverend

Bezug
                                        
Bezug
genau eine reelle Lsg zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 04:51 Fr 07.02.2014
Autor: DieAcht

Hi,


Hier eine kleine Beweisskizze:

   [mm] f:[0,\frac{\pi}{2}]\to\IR [/mm] mit [mm] f(x):=\sin(x)+x^2-1 [/mm]

   [mm] I:=(0,\frac{\pi}{2}) [/mm]

1. [mm] $f''(x)\ge [/mm] 1>0$ für alle [mm] $x\in [/mm] I$

   [mm] $\Rightarrow [/mm] f'(x)$ streng monoton steigend auf $I$ (*)

2. $f'$ stetig [mm] \land [/mm] $f'(0)=1$ [mm] \land [/mm] (*) [mm] $\Rightarrow f'(x)\ge [/mm] 1>0$ für alle [mm] $x\in [/mm] I [mm] \Rightarrow [/mm] f$ streng monoton steigend auf $I$ (**)

3. $f$ stetig [mm] \land [/mm] (**) [mm] \land [/mm] $f(0)<0$ [mm] \land $f(\frac{\pi}{2})>0$ \land [/mm] ZWS [mm] \Rightarrow \exists!\xi\in I:f(\xi)=0 [/mm]


Gruß
DieAcht

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]