matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und Ebenengeradenschar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Geraden und Ebenen" - geradenschar
geradenschar < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

geradenschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:48 Mi 27.06.2007
Autor: mickeymouse

Aufgabe
in einem kartesischen koordinatensystem des R3 sind gegeben die ebene E: [mm] x_1-3x_2+5=0 [/mm] und die geradenschar
[mm] g_k:x= \begin{pmatrix} 4 \\ k-2 \\ -k \end{pmatrix} [/mm] + [mm] \lambda \begin{pmatrix} k^{2}-1 \\ 8 \\ k \end{pmatrix} [/mm] ; [mm] \lambda \in [/mm] R, mit k als reellem scharparameter

a)ermitteln sie die lagebeziehung von E und [mm] g_k [/mm] in abhängigkeit von k

dazu setz ich die gerade in die ebene ein, hab dann also
[mm] k^{2}\lambda-25\lambda-3k=0 [/mm]
stimmt das so, oder hab ich mich verrechnet?
hmm..und wenn die gerade echt parallel zur ebene sein soll, darf es keine wahre aussage geben. und wenn sie in der ebene liegt, muss eine wahre aussage rauskommen, also sowas wie 1=1. und wenn sie die ebene in einem punkt schneidet, muss es genau eine lösung für [mm] \lambda [/mm] geben, oder?
stimmt das so?
aber wie mach ich das dann?

        
Bezug
geradenschar: Antwort
Status: (Antwort) fertig Status 
Datum: 20:09 Mi 27.06.2007
Autor: Somebody


> in einem kartesischen koordinatensystem des R3 sind gegeben
> die ebene E: [mm]x_1-3x_2+5=0[/mm] und die geradenschar
>   [mm]g_k:x= \begin{pmatrix} 4 \\ k-2 \\ -k \end{pmatrix}[/mm] +
> [mm]\lambda \begin{pmatrix} k^{2}-1 \\ 8 \\ k \end{pmatrix}[/mm] ;
> [mm]\lambda \in[/mm] R, mit k als reellem scharparameter
>  
> a)ermitteln sie die lagebeziehung von E und [mm]g_k[/mm] in
> abhängigkeit von k
>  dazu setz ich die gerade in die ebene ein, hab dann also
>  [mm]k^{2}\lambda-25\lambda-3k=0[/mm]
>  stimmt das so, oder hab ich mich verrechnet?

Also ich komme auf
[mm]k^{2}\lambda-25\lambda-3k+15=0[/mm]
bzw.
[mm](k^{2}-25)\lambda-3k+15=0[/mm]
(diese Angabe aber "wie immer ohne Gewähr": vergleiche dies einfach nochmals mit Deiner eigenen Rechnung)

>  hmm..und wenn die gerade echt parallel zur ebene sein
> soll, darf es keine wahre aussage geben. und wenn sie in
> der ebene liegt, muss eine wahre aussage rauskommen, also
> sowas wie 1=1. und wenn sie die ebene in einem punkt
> schneidet, muss es genau eine lösung für [mm]\lambda[/mm] geben,
> oder?

Ich würde nun einfach diese Gleichung nach der Anzahl Lösungen [mm]\lambda[/mm] untersuchen. Dazu würde ich eine Fallunterscheidung machen:
1. Fall [mm]k^2-25\neq 0[/mm]: dann ist die Gleichung linear in [mm]\lambda[/mm], d.h. es gibt genau eine Lösung [mm]\lambda[/mm] und demnach genau einen Schnittpunkt der Geraden mit der Ebene.
2. Fall [mm]k^2-25 = 0[/mm] in diesem Falle muss [mm]k[/mm] einen ganz bestimmten Wert ([mm]k=5[/mm]) haben damit es überhaupt eine (oder mehrere) Lösungen gibt: aber dann gibt es sogar unendlich viele Lösungen [mm]\lambda[/mm], d.h. im Falle [mm]k=5[/mm] liegt die Gerade in der Ebene.
Bleibt [mm]k=-5[/mm]: dann gibt es keine Lösungen [mm]\lambda[/mm], die Gerade ist parallel zur Ebene aber liegt nicht in der Ebene.


>  stimmt das so?
>  aber wie mach ich das dann?


Bezug
                
Bezug
geradenschar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:25 Mi 27.06.2007
Autor: mickeymouse

vielen dank! habs verstanden!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]