ggT und kgV < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 08:52 Di 28.07.2009 | Autor: | ms2008de |
Aufgabe | Beweisen Sie folgende Gleichung:
[mm] (a\IZ [/mm] + [mm] b\IZ)\cap c\IZ [/mm] = ggT(kgV(a,c), [mm] kgV(b,c))\IZ, \forall [/mm] a,b,c [mm] \in \IZ [/mm] |
Hallo,
hab ziemliche Schwierigkeiten hier mal einen Ansatz zu finden, aber bin mir ziemlich sicher, dass folgendes gelten muss:
[mm] (a\IZ [/mm] + [mm] b\IZ)\cap c\IZ =(ggT(a,b)\IZ)\cap c\IZ [/mm] = [mm] kgV(ggT(a,b),c)\IZ [/mm] .
Aber wie komm ich von dem hier auf die rechte Seite, weiß vor allem nicht, ob man die rechte Seite irgendwie umformen kann.
Hilft mir vllt., dass in [mm] \IZ [/mm] gilt: ggT(a,b)*kgV(a,b)= [mm] \pm [/mm] (a*b)?
Hoffe mir kann jmd. weiterhelfen, wäre um jede Hilfe dankbar.
Viele Grüße
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:30 Di 28.07.2009 | Autor: | statler |
Hi!
> Beweisen Sie folgende Gleichung:
> [mm](a\IZ[/mm] + [mm]b\IZ)\cap c\IZ[/mm] = ggT(kgV(a,c), [mm]kgV(b,c))\IZ, \forall[/mm]
> a,b,c [mm]\in \IZ[/mm]
> hab ziemliche Schwierigkeiten hier mal einen Ansatz zu
> finden,
Möglicher Ansatz: Da du in [mm] \IZ [/mm] bist, stehen auf beiden Seiten Hauptideale. Jetzt sei die linke Seite $= [mm] m*\IZ$. [/mm] p sei eine beliebige Primzahl, die in a, b und c mit den Exponenten r, s und t vorkomme. Mit welchem Exponenten kommt sie dann in m vor?
Und dann die gleiche Untersuchung für die rechte Seite. Wenn die Exponenten übereinstimmen, bist du fertig, wenn nicht, stimmt die Behauptung nicht.
Gruß aus HH-Harburg
Dieter
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 10:57 Di 28.07.2009 | Autor: | ms2008de |
> Hi!
>
> Möglicher Ansatz: Da du in [mm]\IZ[/mm] bist, stehen auf beiden
> Seiten Hauptideale. Jetzt sei die linke Seite [mm]= m*\IZ[/mm]. p
> sei eine beliebige Primzahl, die in a, b und c mit den
> Exponenten r, s und t vorkomme. Mit welchem Exponenten
> kommt sie dann in m vor?
Also, wenn meine vorige Umformung gestimmt hat, müsste der Exponent von m: max [mm] \{min\{r,s\}, t\} [/mm] sein
> Und dann die gleiche Untersuchung für die rechte Seite.
Da komme ich jedoch auf [mm] min\{max\{r,t\}, max\{s,t\}\}, [/mm] und wieso sollte das nun das selbe sein? Was hab ich falsch gemacht?
> Wenn die Exponenten übereinstimmen, bist du fertig, wenn
> nicht, stimmt die Behauptung nicht.
Viele Grüße
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:32 Di 28.07.2009 | Autor: | statler |
Mahlzeit!
> > Möglicher Ansatz: Da du in [mm]\IZ[/mm] bist, stehen auf beiden
> > Seiten Hauptideale. Jetzt sei die linke Seite [mm]= m*\IZ[/mm]. p
> > sei eine beliebige Primzahl, die in a, b und c mit den
> > Exponenten r, s und t vorkomme. Mit welchem Exponenten
> > kommt sie dann in m vor?
> Also, wenn meine vorige Umformung gestimmt hat, müsste
> der Exponent von m: max [mm]\{min\{r,s\}, t\}[/mm] sein
> > Und dann die gleiche Untersuchung für die rechte
> Seite.
> Da komme ich jedoch auf [mm]min\{max\{r,t\}, max\{s,t\}\},[/mm] und
> wieso sollte das nun das selbe sein? Was hab ich falsch
> gemacht?
Du kannst jetzt oBdA min(r,s) = r annehmen, warum? Dann gibt es für t 3 mögliche Lagen: davor, dazwischen, dahinter. Probier einfach mal alles durch.
Gruß
Dieter
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 11:59 Di 28.07.2009 | Autor: | ms2008de |
> Mahlzeit!
>
> > > Möglicher Ansatz: Da du in [mm]\IZ[/mm] bist, stehen auf beiden
> > > Seiten Hauptideale. Jetzt sei die linke Seite [mm]= m*\IZ[/mm]. p
> > > sei eine beliebige Primzahl, die in a, b und c mit den
> > > Exponenten r, s und t vorkomme. Mit welchem Exponenten
> > > kommt sie dann in m vor?
> > Also, wenn meine vorige Umformung gestimmt hat, müsste
> > der Exponent von m: max [mm]\{min\{r,s\}, t\}[/mm] sein
> > > Und dann die gleiche Untersuchung für die rechte
> > Seite.
> > Da komme ich jedoch auf [mm]min\{max\{r,t\}, max\{s,t\}\},[/mm] und
> > wieso sollte das nun das selbe sein? Was hab ich falsch
> > gemacht?
>
> Du kannst jetzt oBdA min(r,s) = r annehmen, warum? Dann
> gibt es für t 3 mögliche Lagen: davor, dazwischen,
> dahinter. Probier einfach mal alles durch.
Vielen Dank schonmal bisher.
Okay, soweit hab ich nun alles hinbekommen, aber was passiert denn nun mit den Primzahlen, die nicht in a,b, und c gleichzeitig vorkommen, sondern z.B. nur in c oder eben nur in a und c aber nicht in b? Das is mir noch unklar. Setze ich da, wo sie nicht vorkommen, einfach den Exponenten auf 0, das wär noch das logischste?
Viele Grüße
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:06 Di 28.07.2009 | Autor: | statler |
> Okay, soweit hab ich nun alles hinbekommen, aber was
> passiert denn nun mit den Primzahlen, die nicht in a,b, und
> c gleichzeitig vorkommen, sondern z.B. nur in c oder eben
> nur in a und c aber nicht in b? Das is mir noch unklar.
> Setze ich da, wo sie nicht vorkommen, einfach den
> Exponenten auf 0, das wär noch das logischste?
Den setzt du nicht auf 0, sondern der ist = 0.
Gruß
Dieter
|
|
|
|