matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Sonstigesglatte Vektorfelder
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Sonstiges" - glatte Vektorfelder
glatte Vektorfelder < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

glatte Vektorfelder: Tipp
Status: (Frage) überfällig Status 
Datum: 11:14 Di 20.11.2012
Autor: huzein

Aufgabe
Sei [mm] $X:S^3\to\mathbb R^4$ [/mm] definiert durch $X(x,y,z,w):=(-y,x,-w,z)$.
Zeige, dass $X$ glattes Vektorfeld auf [mm] $S^3$ [/mm] ist.

Hallo,
habe zu zeigen, dass $X$ wie oben definiert ein glattes Vektorfeld auf [mm] $S^3$ [/mm] ist. Dazu muss ich zeigen, dass [mm] $X(x,y,z,w)\in T_xS^3$ [/mm] liegt und nach Hinweis des Übungsleiters, dass $X$ die Einschränkung der glatten Abbildung auf [mm] $\mathbb R^4$ [/mm] ist.

Dass [mm] $X(x,y,z,w)\in T_xS^3$ [/mm] für jedes [mm] $(x,y,z,w)\in S^3$ [/mm] ist klar, denn [mm] $T_xS^3=\{v\in\mathbb R^{n+1}:=0\}$. [/mm] Also einfach einsetzen und fertig.

Aber zu zweitens hab ich ein Problem. Beziehungsweise, das scheint mir zu einfach zu sein, denn [mm] $v:\mathbb R^4\to\mathbb R^4$ [/mm] definiert durch $v(x,y,z,w):=(-y,x,-w,z)$ ist glatt, da die partiellen Ableitungen beliebier Ordnung existieren. Also wäre auch die Einschränkung auf [mm] $S^3$ [/mm] glatt.

Nur ist jetzt [mm] $S^3$ [/mm] als Untermannigfaltigkeit des [mm] $\mathbb R^4$ [/mm] zu betrachten und ich denke, daher ist dieser Weg nicht möglich (warum?).

(Analysis auf Mannigfaltigkeiten)

Hoffe mir kann hier jemand ein Tipp geben.
Danke und liebe Grüße,
huzein

        
Bezug
glatte Vektorfelder: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:46 Mi 21.11.2012
Autor: huzein

man man, wieder keine Hilfe erhalten...

Bezug
        
Bezug
glatte Vektorfelder: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Fr 23.11.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]