gleiche Eigenwerte < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Zeigen Sie:
A (2x2-Matrix) hat genau dann zwei gleiche Eigenwerte, wenn gilt:
[mm] det(A)=(tr(A)^2)/4 [/mm] |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hm, ich habe jetzt schon ein wenig rumgerechnet, aber eigentlich recht unstrukturiert und auch, ohne auf etwas sinnvolles zu kommen und ihne zu wissen, ob ich überhaupt den richtigen Ansatz verfolge...
Ein Eigenwert ist doch die Nullstelle des charakteristischen Polynoms von A, ja? Also habe ich die Gleichung des charakteristischen Polynoms gleich Null gesetzt, mit der PQ-Formel aufgelöst und hatte dann Gleichungen für x1 und x2. Diese dann wieder gleichsetzen?? Da die beiden Eigenwerte gleich sein sollen??
Ist dieser Ansatz richtig? Ich komme nämlich nicht auf den gleichen Term, der rauskommt, wenn man die Gleichung [mm] det(A)=(tr(A)^2)/4 [/mm] ausrechnet... ahhhh
Wäre nett, wenn mir jemand helfen könnte.
|
|
|
|
Hallo Jodeldiplom,
dein Ansatz ist richtig, aber so viel rumrechnen musst du garnicht. Wenn du dir die charakteristische Gleichung aufschreibst, könnte dir auffallen, dass der Koeffizient im linearen Term genau die negative Spur der Matrix ist und der absolute Term (also das ohne "x" oder "k" oder was auch immer deine Variable in der charakteristischen Gleichung ist) genau die Determinante, d.h. die charakteristische Gleichung sieht für eine 2x2 Matrix immer so aus:
[mm]x^2 - tr(A)*x + det(A) = 0 [/mm].
Wenn du darauf die "pq-Formel" anwendest, bekommst du den üblichen Ausdruck und findest 0, 1 oder 2 Lösungen. Wenn jetzt beide Eigenwerte gleich sein sollen, heißt das, dass du nur eine Lösung haben darfst. Wann hast du nur eine Lösung? Wenn die Wurzel = 0 ist. Wann wird die Wurzel 0? Wenn der Radikand 0 wird. Wie sieht dein Radikand aus? Und schwupps ist die Behauptung bewiesen.
Gruß,
Martin
|
|
|
|
|
Hallo Martin,
juhu, dankeschön :) Jetzt ist alles klar und ich habe den Beweis gerade schon sauber aufgeschrieben :) Dass das manchmal so einfach geht... ;)
Schönen Sonntag noch!
|
|
|
|