matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe Analysisgleichung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Komplexe Analysis" - gleichung
gleichung < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gleichung: umstellen
Status: (Frage) beantwortet Status 
Datum: 14:06 Mo 19.03.2007
Autor: hooover

Aufgabe
Berechne die Lösung [mm] z\in\IC [/mm] der Gl. Gib die Lsg. in der FOrm a+ib an.

[mm] \bruch{1+i}{z}+\bruch{20}{4+3i}=3-i [/mm]

Einen schönen guten Tag an alle,
hier handelt es sich um eine alte Kalusuraufgabe (ne Lsg. hab ich auch versteh aber einen Schritt nicht )

Ist ja eigentlich nicht so schwer, ich versuch halt halt erstmal das z auf eine und den Rest auf die andere Seite zu bringen.

[mm] \bruch{1+i}{z}+\bruch{20}{4+3i}=3-i [/mm]  | z

[mm] (1+i)+\bruch{20}{4+3i}*z=(3-i)*z [/mm]

so und das versteh ich grad nicht wie das umgeformt wurde

[mm] (1+i)+\bruch{20}{25}(4-3i)z=(3-i)*z [/mm]

ist das irgendein Trick oder sollte man das mit einfacher Bruchrechnung verstehen können?

Würde mich riesig über eine Erklärung freuen

vielen Dank Gruß hooover

        
Bezug
gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:22 Mo 19.03.2007
Autor: angela.h.b.


> Berechne die Lösung [mm]z\in\IC[/mm] der Gl. Gib die Lsg. in der
> FOrm a+ib an.
>  
> [mm]\bruch{1+i}{z}+\bruch{20}{4+3i}=3-i[/mm]
>  Einen schönen guten Tag an alle,
> hier handelt es sich um eine alte Kalusuraufgabe (ne Lsg.
> hab ich auch versteh aber einen Schritt nicht )
>  
> Ist ja eigentlich nicht so schwer, ich versuch halt halt
> erstmal das z auf eine und den Rest auf die andere Seite zu
> bringen.
>  
> [mm]\bruch{1+i}{z}+\bruch{20}{4+3i}=3-i[/mm]  | z
>  
> [mm](1+i)+\bruch{20}{4+3i}*z=(3-i)*z[/mm]
>  
> so und das versteh ich grad nicht wie das umgeformt wurde
>  
> [mm](1+i)+\bruch{20}{25}(4-3i)z=(3-i)*z[/mm]
>  
> ist das irgendein Trick oder sollte man das mit einfacher
> Bruchrechnung verstehen können?

Hallo,

es ist da ein "Trick" dabei, welchen man so häufig anwendet, daß es schon fast keiner mehr ist. Aber diejenigen, die beginnen, mit komplexen Zahlen zu rechnen, kann man damit verblüffen. Merk's Dir also gut, erstens für Kausuren und zweitens für den Tag, an welchem Du derjenige bist, der andere zum Staunen bringt.

Der Trick ist das Erweitern so, daß man im Nenner die 3.binomische Formel verwenden kann.

Guck:

[mm] \bruch{20}{4+3i}=\bruch{20}{4+3i}*\bruch{4-3i}{4-3i} =\bruch{20*(4-3i)}{4^2-(3i)^2}=\bruch{20*(4-3i)}{16-(-9)}=\bruch{20*(4-3i)}{25} [/mm]

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]