matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysisglm stetigkeit&eins. Limes
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - glm stetigkeit&eins. Limes
glm stetigkeit&eins. Limes < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

glm stetigkeit&eins. Limes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:38 Mo 24.04.2006
Autor: Sanshine

Aufgabe
Seien a,b [mm] \in \IR [/mm] a<b und [mm] f\in [/mm]  C(]a,b[).
Beh.: Dann sind äquivalent:
a) f ist gleichmäßig stetig
b) Der einseitige Grenzwert f(a+) existiert
c) Es existiert ein f* [mm] \in [/mm] C([a,b])  mit [mm] f|_{]a,b[}=f [/mm]

Moin.
Ich habe mir gedacht, ich beweise das ganze mit a) [mm] \Rightarrow [/mm] b) [mm] \Rightarrow [/mm] c) [mm] \Rightarrow [/mm] a).
Dachte, das passendste ist hier, für a) [mm] \Rightarrow [/mm] b) das Cauchyfolgenkrit. der glm Stetigkeit zu nehmen. (Jede CF wird von einer glm. stetigen Fuktion in eine CF überführt). So wie das aussieht, könnte das mein Grenzwert werden. Komme allerdings noch nicht ganz mit dem einseitigen GRenzwert klar.
Bei b) [mm] \Rightarrow [/mm] c) dachte ich, dass vll nicht nur der GRenzwert (a+) von f sondern auch (b-) existiert. Und das würde mir doch bei meinem f* helfen, oder?
Und bei der letzten Richtung habe ich mal wieder gar keine Ahnung.

        
Bezug
glm stetigkeit&eins. Limes: Antwort
Status: (Antwort) fertig Status 
Datum: 11:11 Mo 24.04.2006
Autor: MatthiasKr

Hallo sanshine,

mir kommt aussage b) etwas spanisch vor.... Ich denke, der grenzwert $f(b_-)$ muss genauso existieren. Was wäre sonst zB. mit [mm] $f(x)=\frac{1}{x}$ [/mm] auf $(-1;0)$?

Bei c) => a) kannst du doch benutzen, dass $f^*$ gleichmäßig stetig ist (als stetige funktion auf einem kompaktum).

VG
Matthias

Bezug
        
Bezug
glm stetigkeit&eins. Limes: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:13 Mo 24.04.2006
Autor: Sanshine

Vielen Dank erst einmal für die Antwort.
Kam mir eben auch sonderbar vor, dass nur der eine einseitige Grenzwert exisitiert. Antwort bekomme ich dann wohl am mittwoch,
Gruß
San

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]