matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheoriegreen' Fkt/ Rekurrenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Wahrscheinlichkeitstheorie" - green' Fkt/ Rekurrenz
green' Fkt/ Rekurrenz < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

green' Fkt/ Rekurrenz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:28 Sa 19.01.2019
Autor: mimo1

Aufgabe
Sei X eine zeitlich homogene Markov-Kette mit Zustandsmenge S und Übergangsmatrix K. Wir setzen

[mm] G(x,y|z)=\sum_{n\ge 0}K^n(x,y)z^n\; und\; R(x,y|z)=\sum_{n\ge 0}P_x(\tau_{y,1}=n)z^n [/mm]

für [mm] x,y\in [/mm] S und alle [mm] z\in\IC [/mm] sofern die Summen konvergieren.

a) Zeige

[mm] R(x,y|z)=K(x,y)z+\sum_{w\in S, y\not=y}K(x,w)zR(w,y|z) [/mm]

für alle [mm] x,y\in [/mm] S
b) Zeigen Sie, dass [mm] R(x,y|z)\ge [/mm] R(x,w|z)R(w,y|z) für verschiedene [mm] x,y,w\in [/mm] S gilt.

c) Ein Zustand w heißt Schnittpunkt von x nach y, wenn jedes Tupel [mm] (x_0,...,x_n)von [/mm] Zuständen mit [mm] x_0=x, x_n=y [/mm] und [mm] x_0\rightarrow x_1,...,x_n [/mm] stets w enthält.
Zeige, dass R(x,y|z)=R(x,w|z)R(w,y|z) für verschiedene [mm] x,y,w\in [/mm] S gilt, wenn w Schnittpunkt von x nach y ist.
d) Zeige: Ist [mm] x\in [/mm] S  rekurrent, dann gilt [mm] E_x(\tau_{x,1})=\bruch{d}{dz}R(x,x|z)|_{z=1-}. [/mm]
e) Räumliche Homogenität: Es sei [mm] S=\IZ [/mm] und es gelte K(x,y)=K(x+w,z+w) für alle [mm] x,y,w\in \IZ. [/mm] Zeige, dass G(x+w, y+w|z)=G(x,y|z) und R(x+w,y+w|z)=R(x,y|z) für alle [mm] x,y,w\in\IZ [/mm] gilt

Hallo zusammen,

k-te Eintrittszeit ist folgend definiert: [mm] \tau_{x,k}=inf\{n>\tau_{x,k-1}: X_n=x\} [/mm]
Für [mm] x,y\in [/mm] S sei [mm] R(x,y)=P_X(\tau_{y,1}<\infty). [/mm] Außerdem ist
[mm] V_X=|\{ n\ge 0: X_n=x\}|=\sum_{n\ge 0} 1_{X_n=x} [/mm] ist die Anzahl der Besuche.
Die Greensche Fkt.  [mm] G(x,y)=E_X(V_y)=\sum_{n\ge 0}P_X(X_n=y)=\sum_{n\ge 0}K^n(x,y) [/mm]

a) [mm] R(x,y|z)\overset{Def}{=}\sum_{n\ge 0}P_x(\tau_{y,1}=n)z^n=P_x(\tau_{y,1}=0)+ P_x(\tau_{y,1}=1)z+P_x(\tau_{y,1}=2)z^2+...=\sum_{n\ge 0}P_x(\tau_{y,1}<\infty, X_n=x)z^n=\underbrace{P_x(\tau_{y,1}<\infty, X_n=x)}_{K(x,y)}z +\sum_{n\ge 2}P_x(\tau_{y,1}<\infty, X_n=x)z^n [/mm]

Komme einach nicht weiter...Kann mir jemand einen Tipp geben?

        
Bezug
green' Fkt/ Rekurrenz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:02 Sa 19.01.2019
Autor: mimo1

e)  [mm] G(x+w,y+w|z)=\sum_{n\ge 0} K^n(x+w,y+w)z^n\overset{Vor.}{=}\sum_{n\ge 0}K^n(x,y)z^n=G(x,y) [/mm]

[mm] R(x+w,y+w)=\underbrace{K(x+w,y+w)}_{=K(x,y)}z+\sum_{w\in S,w\not=y}K(x+w,w)zR(w,y+w|z)=...?....=K(x,y)z+\sum_{w\in S,w\not=y}K(x,w)zR(w,y|z) [/mm]

Ich wäre für jeden noch so kleinen Tipp dankbar.


Bezug
                
Bezug
green' Fkt/ Rekurrenz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Mo 21.01.2019
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
green' Fkt/ Rekurrenz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Di 22.01.2019
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 1d 15h 06m 5. Gonozal_IX
SIntRech/Mittlere Geschwindigkeit
Status vor 1d 20h 02m 6. luis52
SStochWkeit/Normalverteilung
Status vor 1d 20h 53m 3. magics
UDiskrMath/Restklassen und Erzeuger
Status vor 4d 4. Marc
SVektoren/Dreieck, Viereck
Status vor 5d 4. fred97
SGanzratFkt/Schnittpunkt
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]