greensche funktion < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | berechne die greensche Funktion der sturm liouvillschen Randwertaufgabe (px')' + qx=y, R_1x= [mm] \alpha_1 x(a)+\alpha_2x'(a), [/mm] R_2x= [mm] \beta_1 x(b)+\beta_2x'(b):
[/mm]
x'' = y, x(0)=x(1)=0
bestimme dazu ein fundamentalsystem [mm] x_1 [/mm] und [mm] x_2 [/mm] der homogenen Gleichung , das den Bedingungen [mm] R_1x_1=0, R_2x_2=0 [/mm] genügt und setze c:= [mm] p(x_1x'_2-x'_1x_2). [/mm] |
hallo an alle!!
kann mir bitte jemand helfen?
ich stehe vor folgendem problem:
um die greensche funktion zu berechnen, soll ich zuerst eine lösung der homogenen gleichung x''=0 berechnen.
das habe ich nun auch gemacht und komme aber zu einem ergebnis das mir irgendwie nicht viel bringt, nämlich x=ay+b.
wenn ich jetzt noch die randbedingungen einsetze, erhalte ich a=0 und b= 0.
stimmt das soweit?
wenn ja was nützt mir jetzt dieses ergebnis? y wäre dann ja beliebig oder? und soweit ich das im moment versteh, hab ich dann ja auch kein [mm] x_1 [/mm] und kein [mm] x_2 [/mm] um das c zu berechnen, oder?
schon einmal vielen dank im voraus für die hilfe!
lg spektrum
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:20 Mi 31.01.2007 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|