matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Grenzwertegrenzwertberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Grenzwerte" - grenzwertberechnung
grenzwertberechnung < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

grenzwertberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:07 Fr 11.04.2008
Autor: mickeymouse

Aufgabe
geg.:
[mm] f_k(x) [/mm] = (2x+k) [mm] e^{\bruch{-x}{k}} [/mm] ;  k>0
Bestimmen Sie das Verhalten der Funktion an den Rändern des Definitionsbereichs

ich muss also die grenzwerte für x gegen + und - [mm] \infty [/mm] berechnen.
dann mach ich [mm] \lim_{x \to \infty}(2x+k) e^{\bruch{-x}{k}} [/mm]
der erste term geht ja gegen [mm] +\infty [/mm] und der zweite gegen 0, also hab ich [mm] "0*\infty"... [/mm] wie berechne ich den grenzwert dann? l´hospital kann ich ja hier nicht verwenden...
und für x gegen [mm] -\infty [/mm] steht ja zum schluss egtl [mm] "+\infty*-\infty" [/mm] und das ergibt ja immer [mm] -\infty, [/mm] oder?



        
Bezug
grenzwertberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:29 Fr 11.04.2008
Autor: steppenhahn


> Ich muss also die grenzwerte für [mm]x\to\pm\infty[/mm]
> berechnen.
> Dann mach ich [mm]\lim_{x \to \infty}(2x+k)*e^{\bruch{-x}{k}}[/mm].

Das ist richtig. [ok]

> der erste term geht ja gegen [mm]+\infty[/mm] und der zweite gegen
> 0, also hab ich [mm]"0*\infty"...[/mm] wie berechne ich den
> grenzwert dann? l´hospital kann ich ja hier nicht
> verwenden...

Ich finde schonmal gut, dass du die Problematik erkannt hast. Manche sagen nämlich einfach: Der erste Faktor wird 0, also wird der Grenzwert 0. Das ist falsch, da der zweite Faktor ja wächst und sehr groß wird, somit also das Ergebnis auch etwas von 0 verschiedenes sein kann.

Du hast Recht, es läuft auf L'Hospital hinaus, doch dafür muss man zunächst ein bisschen umformen: Dann geht es ganz leicht.

Es ist

[mm]f(x) = (2*x+k)*e^{-\bruch{x}{k}} = (2*x+k)*\bruch{1}{e^{\bruch{x}{k}}} = \bruch{(2*x+k)}{e^{\bruch{x}{k}}} [/mm]

Nun kannst du L'Hospital anwenden, denn für [mm] x\to\infty [/mm] erhält man [mm] \bruch{\infty}{\infty}. [/mm] (Du musst allerdings nicht unbedingt, denn eigentlich ist das Ergebnis abzulesen: Die Exponentialfunktion im Nenner steigt für [mm] x\to\infty [/mm] wesentlich schneller als die lineare Funktion im Zähler...)

Benutzt wurde die Regel

[mm]a^{-n} = \bruch{1}{a^{n}}[/mm].

Du siehst: Das Prinzip ist, unpassendes passend zu machen. Meistens kann man auch Grenzwerte der Form [mm] \dq 0*\infty\dq [/mm] in L'Hospital-konforme Ausdrücke umwandeln.

Bei der zweiten Teilaufgabe kannst du im Grunde [mm]x=-\infty[/mm] einsetzen. Das hast du richtig ausgerechnet, da kommt [mm] -\infty [/mm] raus.

Nur noch so als Anmerkung: Falls k nicht größer 0 wäre wie vorausgesetzt, hätte man bei den Grenzwerten jeweils eine Fallunterscheidung für k>0 und k<0 machen müssen, da sich dann die Vorzeichen im Exponenten von e ja genau umkehren.

Bezug
                
Bezug
grenzwertberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:38 Fr 11.04.2008
Autor: mickeymouse

vielen dank!!:)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]