matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Finanzmathematikheston modell
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Finanzmathematik" - heston modell
heston modell < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

heston modell: maßwechsel
Status: (Frage) beantwortet Status 
Datum: 23:21 Sa 22.01.2011
Autor: statistikerin22

hallo leute,

ich bin am verzweifeln!

ich finde niergendwo im gaaaanzen internet eine schöne herleitung vom maßwechsel im heston modell.

ich kann es mir leider nicht selbst herleiten.

wenn irgendjemand weiss wo ich etwas brauchbares finden kann bitte melden.

ich habe mir fast alles schon durchgesehn, also bitte die frage "beantworten" und damit schließen nur wenn es brauchbar ist.

vielen dank,

lg

        
Bezug
heston modell: Antwort
Status: (Antwort) fertig Status 
Datum: 13:20 So 23.01.2011
Autor: dormant

HI

> hallo leute,
>  
> ich bin am verzweifeln!
>  
> ich finde niergendwo im gaaaanzen internet eine schöne
> herleitung vom maßwechsel im heston modell.

Kannst du vielleicht konkreter aufzeigen, am Besten in einem Paper, oder sonstige Spezifikation vom Heston Modell, welcher Schritt, bzw. an welcher Stelle dich der Maßwechsel stört. Das ist meistens nämlich ein recht einfaches und gängiges Argument, und deswegen wird es oft weggelassen.
  

> ich kann es mir leider nicht selbst herleiten.
>
> wenn irgendjemand weiss wo ich etwas brauchbares finden
> kann bitte melden.
>  
> ich habe mir fast alles schon durchgesehn, also bitte die
> frage "beantworten" und damit schließen nur wenn es
> brauchbar ist.
>  
> vielen dank,
>  
> lg


Bezug
                
Bezug
heston modell: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:33 So 23.01.2011
Autor: statistikerin22

weiss jemand wie folgendes geht ...

also seinem paper nach geht heston von der allgemeinen merton pde aus.

diese funtion [mm] $\lambda(t,s,v)$ [/mm] ist seine risikoprämie der volatilität und heston wählt sie proportional zu [mm] $v_t$ [/mm] nämlich [mm] $\lambda(t,s,v)=\lambda v_t$ [/mm] mit [mm] $\lambda$ [/mm] konstant.

nun, wenn man zeigen will dass der diskontierte preisprozess [mm] $S_t$ [/mm] aus dem heston modell ein martingal ist muss man zeigen dass eben [mm] $\tilde{S}(t)=e^{-rt}S(t)$ [/mm] ein martingal ist.

nun habe ich ein paar sachen die mich bremsen.
1.) wieso sieht mein exponent von e so aus?
2.) daraus resuliert auch die unvollständigkeit des modells, aber wie seh ich das?
3.) wie hängt das nun mit diesem [mm] $\lambda()$ [/mm] zusammen??
und dann abschließend
4.) wie hängt dann dieser maßwechsel mit meinem neuen risikoneutralen volatilitätsprozess [mm] \left[\kappa^*\left(\theta^*-v_t\right)\right]dt+\sigma\sqrt{v_t}d\left(\rho B_t^1 + \sqrt{1-\rho^2}B_t^2\right) [/mm]  mit [mm] $\kappa^*=\kappa-\rho \sigma$ [/mm] und [mm] $\theta^*=\frac{\kappa \theta}{\kappa-\rho \sigma}$ [/mm] zusammen?





Bezug
                        
Bezug
heston modell: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Di 25.01.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
heston modell: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:44 Do 27.01.2011
Autor: statistikerin22

weiss jemand wie folgendes geht ...

also seinem paper nach geht heston von der allgemeinen merton pde aus.

diese funtion [mm] $\lambda(t,s,v)$ [/mm] ist seine risikoprämie der volatilität und heston wählt sie proportional zu [mm] $v_t$ [/mm] nämlich [mm] $\lambda(t,s,v)=\lambda v_t$ [/mm] mit [mm] $\lambda$ [/mm] konstant.

nun, wenn man zeigen will dass der diskontierte preisprozess [mm] $S_t$ [/mm] aus dem heston modell ein martingal ist muss man zeigen dass eben [mm] $\tilde{S}(t)=e^{-rt}S(t)$ [/mm] ein martingal ist.

nun habe ich ein paar sachen die mich bremsen.
1.) wieso sieht mein exponent von e so aus?
2.) daraus resuliert auch die unvollständigkeit des modells, aber wie seh ich das?
3.) wie hängt das nun mit diesem [mm] $\lambda()$ [/mm] zusammen??
und dann abschließend
4.) wie hängt dann dieser maßwechsel mit meinem neuen risikoneutralen volatilitätsprozess [mm] \left[\kappa^*\left(\theta^*-v_t\right)\right]dt+\sigma\sqrt{v_t}d\left(\rho B_t^1 + \sqrt{1-\rho^2}B_t^2\right) [/mm]  mit [mm] $\kappa^*=\kappa-\rho \sigma$ [/mm] und [mm] $\theta^*=\frac{\kappa \theta}{\kappa-\rho \sigma}$ [/mm] zusammen?




Bezug
                
Bezug
heston modell: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:21 Sa 29.01.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]