matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe Analysisholomorphe Funktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Komplexe Analysis" - holomorphe Funktion
holomorphe Funktion < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

holomorphe Funktion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:15 Mo 03.07.2006
Autor: marcstein

Aufgabe
sei [mm] f:\IC\to\IC [/mm] eine holomorphe funktion. überprüfen sie die funktion [mm] g:=\IC\to\IC [/mm] mit
[mm] g:=\overline{f(\overline{z})} [/mm] auf holomorphie.  

hi!

ich habe bei der aufgabe es mit den cauchy-riemann-dgl. versucht. bin aber gescheitert. vielleicht kann mir jemand ein tip geben, wie man so eine aufgabe anpackt.
danke!

ich habe diese frage in keinem forum auf anderen internetseiten gestellt.

        
Bezug
holomorphe Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 07:09 Do 06.07.2006
Autor: Leopold_Gast

Wenn dir bekannt ist, daß jede holomorphe Funktion [mm]f: \ \mathbb{C} \to \mathbb{C}[/mm] eine Potenzreihenentwicklung um [mm]0[/mm] besitzt, die [mm]f[/mm] in ganz [mm]\mathbb{C}[/mm] darstellt, ist die Aufgabe trivial. Es geht aber auch ohne dieses Wissen direkt mit der Definition der Holomorphie. Da der Definitionsbereich von [mm]f[/mm] ganz [mm]\mathbb{C}[/mm] ist, sind Holomorphie und komplexe Differenzierbarkeit dasselbe. Betrachte daher für komplexes [mm]h \neq 0[/mm] den Differenzenquotienten von [mm]g[/mm] an der Stelle [mm]z[/mm]:

[mm]\frac{1}{h} \left( g(z+h) - g(z) \right) = \frac{1}{h} \left( \overline{f \left( \overline{z+h} \right)} - \overline{f \left( \overline{z} \right)} \right) = \overline{ \frac{1}{\overline{h}} \left( f \left( \overline{z} + \overline{h} \right) - f \left( \overline{z} \right) \right) }[/mm]

Unter der großen Überstreichung zuletzt steht jetzt aber der Differenzenquotient der Funktion [mm]f[/mm] an der Stelle [mm]\overline{z}[/mm], wobei [mm]h[/mm] durch [mm]\overline{h}[/mm] ersetzt ist. Das ist aber unproblematisch, da die Grenzübergänge [mm]h \to 0[/mm]  und [mm]\overline{h} \to 0[/mm] sich gegenseitig bedingen.

Was passiert also oben für [mm]h \to 0[/mm]?

Bezug
                
Bezug
holomorphe Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:27 Fr 07.07.2006
Autor: marcstein

hallo leopold!

für h gegen 0 bekomme ich gerade die komplexe ableitung von [mm] \overline{f(\overline{z})}=g(z). [/mm] somit ist g auf ganz [mm] \IC [/mm] holomorph!

vielen dank für den hinweis!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]