matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Gleichungssystemehomogenes Gleichungssystem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Gleichungssysteme" - homogenes Gleichungssystem
homogenes Gleichungssystem < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

homogenes Gleichungssystem: Tipp
Status: (Frage) beantwortet Status 
Datum: 15:42 Sa 21.01.2006
Autor: Kuebi

Hallo ihr!

Zur Lösung einer Aufgabe habe ich folgenden Satz gefunden:

Gegeben ein homogens lineares Gleichungssystem durch Ax=0. Ist x eine nichttriviale Lösung des Systems, so ist auch jedes Vielfaches von x eine Lösung.
Ist x' eine weitere Lösung, so bildet auch (x+x') eine Lösung.


Okay, so weit so gut.
Diesen Satz möchte ich nun verwenden. Da ich das aber nicht einfach so machen will sondern wissen warum das so ist habe ich mir folgende kleine Beweisskizze zur Vorarbeit (Beliebiger Körper) überlegt:

1. Ax=0 mit x als Lösung. A(cx) = Acx = cAx=0, auf beiden Seiten mit 1/c multiplizieren liefert erneut Ax=0.

2. Ax=0 mit x als Lösung. A(x+x')= ... ????

Funktioniert das so oder ist das zu simpel und wie könnte ich bei 2. weiter verfahren?

Wäre dankbar eure Hilfe!

Vlg, Kübi

        
Bezug
homogenes Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 16:05 Sa 21.01.2006
Autor: Astrid

Hallo Kübi,

ich weiß jetzt nicht, was ihr voraussetzen könnt. Aber da $A$ linear ist, gilt:
$A(x+x') = Ax +Ax'$

Der Rest ist ok. Zum genauen Nachrechnen kannst du dir ja ein allgemeines lin. Gleichungssystem aufschreiben und es dadurch einmal nachvollziehen: :-)

[mm] $A(x+x')=\pmat{a_{11} & \ldots & a_{1m} \\ \vdots & & \vdots \\ a_{n1} & \ldots & a_{nm}} (\pmat{x_1 \\ \vdots \\ x_m}+\pmat{x'_1 \\ \vdots \\ x'_m})=...$ [/mm]

Viele Grüße
Astrid

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]