matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysisimplizite Funktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - implizite Funktion
implizite Funktion < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

implizite Funktion: Frage
Status: (Frage) beantwortet Status 
Datum: 15:01 Di 29.03.2005
Autor: Plantronics

Hi,

ich sollte folgende Aufgabe lösen:

Zeigen Sie, dasss sich die Gleichungen xu+yvu²=2 und [mm] xu³+y²$v^4$=2 [/mm] für u und v in einer Umgebung des Punktes (1,1,1,1) als Funktion von x & y eindeutig auflösen lassen und berechnen Sie [mm] $\bruch{\partial v}{\partial y}$ [/mm] an der Stelle (1,1).

Also ich habe es folgendermaßen probiert:

F(u,v,x,y)= [mm] $\vektor{xu+yvu²-2 \\ xu³+y²v^4-2}$ [/mm]
Da F(1,1,1,1)=0 und F stetig differenzierbar mit
F'(u,v,x,y)= [mm] $\pmat{ x+2uvy & yu² & u & u²v \\ 3u²x & 4v³y² & u³ & 2y v^4 }$. [/mm]
Da [mm] det(\bruch{ \partial F}{\patial u,v})=9 [/mm] ist, daher regulär lässt sisich eindeutig auflösen (??).
Stimmt das soweit?
Mein nächsten Problem ist [mm] $\bruch{\partial v}{\partial y}$. [/mm] Wie berechnet man das?

Hoffe es kann mir jemand helfen.
Mfg,
  Martin

        
Bezug
implizite Funktion: Ableitungen
Status: (Antwort) fertig Status 
Datum: 15:51 Di 29.03.2005
Autor: MathePower

Hallo,

> Da [mm]det(\bruch{ \partial F}{\patial u,v})=9[/mm] ist, daher
> regulär lässt sisich eindeutig auflösen (??).
>  Stimmt das soweit?

Ja, das stimmt.


>  Mein nächsten Problem ist [mm]\bruch{\partial v}{\partial y}[/mm].
> Wie berechnet man das?

Zunächst sieht die Funktion so aus:

[mm]F\left( {x,\;y,\;u\left( {x,\,y} \right),\;v\left( {x,\;y} \right)} \right)\; = \;0][/mm]

Um jetzt die partiellen Ableitungen nach x bzw.y zu bilden, wendest Du die Kettenregel an (implizites Differenzieren):

[mm] \begin{gathered} \frac{\delta } {{\delta x}}\;:\;F_x \; + \;F_u \;u_x \; + \;F_v \;v_x \; = \;0 \hfill \\ \frac{\delta } {{\delta y}}\;:\;F_y \; + \;F_u \;u_y \; + \;F_v \;v_y \; = \;0 \hfill \\ \end{gathered} [/mm]

Da es sich um eine vektorwertige Funktion, hast Du zwei 2x2-Gleichungssysteme zu lösen.

Gruß
MathePower

Bezug
                
Bezug
implizite Funktion: Frage2
Status: (Frage) beantwortet Status 
Datum: 17:04 Di 29.03.2005
Autor: Plantronics

Vielen Dank für die Antwort.

> Zunächst sieht die Funktion so aus:
>  
> [mm]F\left( {x,\;y,\;u\left( {x,\,y} \right),\;v\left( {x,\;y} \right)} \right)\; = \;0][/mm]
>  
> Um jetzt die partiellen Ableitungen nach x bzw.y zu bilden,
> wendest Du die Kettenregel an (implizites Differenzieren):
>  
> [mm] \begin{gathered} \frac{\delta } {{\partial x}}\;:\;F_x \; + \;F_u \;u_x \; + \;F_v \;v_x \; = \;0 \hfill \\ \frac{\partial } {{\partial y}}\;:\;F_y \; + \;F_u \;u_y \; + \;F_v \;v_y \; = \;0 \hfill \\ \end{gathered} [/mm]
>  
> Da es sich um eine vektorwertige Funktion, hast Du zwei
> 2x2-Gleichungssysteme zu lösen.

Das verstehe ich nicht ganz. Mir ist zwar klar dass man die kettenregel benützen muss, nur weiss ich ja eigentlich nichts über [mm] $u_x, u_y, v_x, v_y$, [/mm] oder doch? Vielleicht kann das jemand genauer für mich DAU erklären?

   Martin

Bezug
                        
Bezug
implizite Funktion: Bestimmung
Status: (Antwort) fertig Status 
Datum: 19:00 Di 29.03.2005
Autor: MathePower

Hallo,

> Das verstehe ich nicht ganz. Mir ist zwar klar dass man die
> kettenregel benützen muss, nur weiss ich ja eigentlich
> nichts über [mm]u_x, u_y, v_x, v_y[/mm], oder doch? Vielleicht kann
> das jemand genauer für mich DAU erklären?

Die partiellen Ableitungen [mm]u_x, u_y, v_x, v_y[/mm] sind aus den Gleichungssystemen zu bestimmen.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]