matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Induktioninduktionsbeweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Induktion" - induktionsbeweis
induktionsbeweis < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

induktionsbeweis: binominalkoeffizienten
Status: (Frage) beantwortet Status 
Datum: 15:38 Di 11.11.2008
Autor: doener

Aufgabe
man soll zeigen, dass [mm] \vektor{N+M \\ k+M} =\summe_{i=0}^{M} \vektor{N \\ k+i}\vektor{M \\ i} [/mm]

zuerst also M=1: das ist einfach, da bekanntlich [mm] \vektor{n \\ k} [/mm] = [mm] \vektor{n-1 \\ k} [/mm] + [mm] \vektor{n-1 \\ k-1} [/mm] gilt.



nun also für M+1:

[mm] \summe_{i=0}^{M+1} \vektor{N \\ k+i} \vektor{M+1 \\ i} [/mm] =  [mm] \vektor{N \\ k+M+1} [/mm] +  [mm] \summe_{i=0}^{M} \vektor{N \\ k+i} \Bigg[\vektor{M \\ i} [/mm] +  [mm] \vektor{M \\ i-1}\Bigg] [/mm]

das wieder wegen der eigenschaft, die schon für M=1 angewendet wurde

=  [mm] \vektor{N \\ k+M+1} [/mm] +  [mm] \summe_{i=0}^{M} \vektor{N \\ k+i}\vektor{M \\ i} [/mm] + [mm] \summe_{i=0}^{M}\vektor{N \\ k+i} \vektor{M \\ i-1} [/mm]

das ist auch klar, nun aber:

=  [mm] \vektor{N \\ k+M+1} [/mm] +   [mm] \vektor{N+M \\ k+M}+\summe_{i=0}^{M-1} \vektor{N \\ k+i+1}\vektor{M \\ i} [/mm]

habe keine ahnung, was hier genau umgeformt wurde, ebenso im nächsten schritt:

=  [mm] \vektor{N \\ k+M+1} [/mm] +   [mm] \vektor{N+M \\ k+M} [/mm] + [mm] \vektor{N+M\\k+1+M}-\vektor{N \\ k+M+1} [/mm]

der rest ist dann einfach. danke im voraus!



        
Bezug
induktionsbeweis: Antwort
Status: (Antwort) fertig Status 
Datum: 14:32 Do 13.11.2008
Autor: otto.euler

Von der zweiten zur dritten Zeile wurde im mittleren Term die Induktionsvoraussetzung verwendet. Im hinteren Term wurde der Index i verschoben, also i+1 statt i nach der Summe. Dadurch läuft i nicht mehr von 0 bis M, sondern von -1 bis M-1. Den Summand für i=-1 hat man weggelassen, weil er 0 ergibt: [mm] \vektor{M \\ -1} [/mm] = 0

Von der dritten zur vierten Zeile hat man in Gedanken die letzte Summe um den Summanden für i=M erweitert, dieser wird in der vierten Zeile wieder abgezogen. Und für die dann entstehende Summe die Induktionsvoraussetzung mit k+1 angewendet.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]