matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktioneninfinum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Funktionen" - infinum
infinum < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

infinum: infinum und supremum
Status: (Frage) beantwortet Status 
Datum: 08:42 Fr 23.11.2007
Autor: Kreide

Aufgabe
Beweise oder widerlege
[mm] inf(A\cap [/mm] B)= max(inf(A),inf(B))

[mm] inf(A\cup [/mm] B)= min(inf(A),inf(B))  [mm] \wedge sup(A\cup [/mm] B)= max(sup(A),sup(B))


A,B sind Teilemengen von den rellen Zahlen
sup {} [mm] =-\infty [/mm]  inf{}= [mm] \infty [/mm]  sup(A)= [mm] \infty, [/mm] wenn A nicht nach oben beschränkt ist, inf(B) - [mm] \infy, [/mm] wenn B nicht nach unten beschränkt ist


Was soll das bedeuten?
max(inf(A),inf(B))

Das Maximum von was? Verstehe diese Schreibweise irgendwie nicht... :(

        
Bezug
infinum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:58 Fr 23.11.2007
Autor: Kreide

sei A={1,2,3,4,5}
und B ={7,8,9}

inf{A}=1
inf {B}= 7

max(inf(A), inf(B))=7

stimmt das?

Bezug
                
Bezug
infinum: Antwort
Status: (Antwort) fertig Status 
Datum: 09:44 Fr 23.11.2007
Autor: Kroni

Hi,

ja, das hätte ich auch so geschrieben.

LG

Kroni

Bezug
        
Bezug
infinum: Antwort
Status: (Antwort) fertig Status 
Datum: 09:47 Fr 23.11.2007
Autor: Kroni

Hi,


> Beweise oder widerlege
>  [mm]inf(A\cap[/mm] B)= max(inf(A),inf(B))
>  
> [mm]inf(A\cup[/mm] B)= min(inf(A),inf(B))  [mm]\wedge sup(A\cup[/mm] B)=
> max(sup(A),sup(B))
>  
> A,B sind Teilemengen von den rellen Zahlen
>  sup {} [mm]=-\infty[/mm]  inf{}= [mm]\infty[/mm]  sup(A)= [mm]\infty,[/mm] wenn A
> nicht nach oben beschränkt ist, inf(B) - [mm]\infty,[/mm] wenn B
> nicht nach unten beschränkt ist

Ja, das stimmt soweit.

>  
>
> Was soll das bedeuten?
> max(inf(A),inf(B))

Die Bedeutung hast du dir ja gerade eben selbst erschlossen.

>  
> Das Maximum von was? Verstehe diese Schreibweise irgendwie
> nicht... :(

Nun ja, das Maximum von [3,5] ist ja gerade 5...

Zu deiner Frage: Nehme mal an, dass bei A geschnitten B eine leere Menge vorliegt. Dann hast du aber bei A, wenn A nach oben als auch nach unten beschränkt ist zumindest nen Supremum und Infimum, bei B analog. Dann überlege dir mal, was bei max(inf(A),inf(B)) herauskommt etc.

Bei der Vereinigt würde ich analog ein paar Beispiele angucken, und dann versuchen, zu verallgemeinern.

LG

Kroni


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]