matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktioneninjektiv auf kleinem intervall
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionen" - injektiv auf kleinem intervall
injektiv auf kleinem intervall < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

injektiv auf kleinem intervall: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:18 Mi 30.12.2009
Autor: valoo

Aufgabe
Sei [mm] f(x):=\begin{cases} x+x^{2}*cos(\bruch{\pi}{x}), & \mbox{für } x\not=0 \mbox \\ 0, & \mbox{für } x=0 \mbox {} \end{cases} [/mm]
Ist f stetig, differenzierbar? Existiert ein Intervall [mm] (-\varepsilon,\varepsilon) [/mm] mit [mm] \varepsilon>0 [/mm] sodass f injektiv ist? Welches Phänomen wird hier untersucht?

Das mit Stetigkeit und Diffbarkeit ist ja jetzt nicht das Problem; aber das mit diesem injektivem Intervall...
Ich würde ja raten, dass so eines nicht existiert, zwar ist f für x gegen 0 asymptotisch zu x, aber es gibt immer noch Schwingungen.
Kann man da sagen, dass ein [mm] x_{1}\in(0,\varepsilon) [/mm] existiert, sodass [mm] f'(x_{1})=0 [/mm] und [mm] f''(x_{1})>0? [/mm] (was man natürlich beweisen müsste...)
Dann existiert aber ein [mm] x_{2}f(x_{1}), [/mm] nach dem ZWS also ein [mm] x_{3} Geht das so? Das Problem dabei ist leider, dass wir noch nicht relative Extrema hatten, müsste also auch anders gehen, nur wie?
Und was ist mit der letzten Frage gemeint?

        
Bezug
injektiv auf kleinem intervall: Antwort
Status: (Antwort) fertig Status 
Datum: 16:54 Mi 30.12.2009
Autor: angela.h.b.


> Sei [mm]f(x):=\begin{cases} x+x^{2}*cos(\bruch{\pi}{x}), & \mbox{für } x\not=0 \mbox \\ 0, & \mbox{für } x=0 \mbox {} \end{cases}[/mm]
>  
> Ist f stetig, differenzierbar? Existiert ein Intervall
> [mm](-\varepsilon,\varepsilon)[/mm] mit [mm]\varepsilon>0[/mm] sodass f
> injektiv ist? Welches Phänomen wird hier untersucht?
>  Das mit Stetigkeit und Diffbarkeit ist ja jetzt nicht das
> Problem; aber das mit diesem injektivem Intervall...
>  Ich würde ja raten, dass so eines nicht existiert, zwar
> ist f für x gegen 0 asymptotisch zu x, aber es gibt immer
> noch Schwingungen.
>  Kann man da sagen, dass ein [mm]x_{1}\in(0,\varepsilon)[/mm]
> existiert, sodass [mm]f'(x_{1})=0[/mm] und [mm]f''(x_{1})>0?[/mm] (was man
> natürlich beweisen müsste...)
>  Dann existiert aber ein [mm]x_{2}f(x_{1}),[/mm]
> nach dem ZWS also ein [mm]x_{3}
> => f nicht injektiv
>  Geht das so? Das Problem dabei ist leider, dass wir noch
> nicht relative Extrema hatten, müsste also auch anders
> gehen, nur wie?

Hallo,

überleg Dir, daß die Funktion, wenn injektiv ist über einem Intervall, dort monoton sein muß.
Und dann überleg Dir, ob das sein kann oder nicht.

>  Und was ist mit der letzten Frage gemeint?

Ich denke mal, daß mit diesem "Phänomen" gemeint ist, ob es solch ein Intervall gibt, über welchem die Funktion keinen Extremwert hat.

Gruß v. Angela






Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]