matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Sonstigesinjektiv, surjektiv
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Sonstiges" - injektiv, surjektiv
injektiv, surjektiv < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

injektiv, surjektiv: Tipp, Idee, Hilfe
Status: (Frage) beantwortet Status 
Datum: 01:44 Do 06.10.2011
Autor: Mija

Aufgabe
Seien [mm] $R_1,R_2,S_1,S_2$ [/mm] Mengen, so dass [mm] $R_1 \subseteq R_2, [/mm] S1 [mm] \subseteq S_2$. [/mm]
Zeigen Sie:
a) Falls eine injektive Funktion von [mm] $R_2$ [/mm] nach [mm] $S_1$ [/mm] existiert, dann existiert auch eine injektive Funktion von [mm] $R_1$ [/mm] nach [mm] $S_2$. [/mm]
b) Falls [mm] $R_1 \not= \emptyset$ [/mm] und es existiert eine surjektive Funktion von [mm] $R_1$ [/mm] nach [mm] $S_2$ [/mm] existiert, dann existiert auch eine surjektive Funktion von [mm] $R_2$ [/mm] nach [mm] $S_1$. [/mm]

Hallo,

ich weiß, dass die Umkehrfunktion einer injektiven Funktion injektiv ist. Ich weiß auch, dass es zu einer injektiven (bzw. surjektiven) Funktion f eine Umkehrfunktion g existiert, so dass $f [mm] \circ [/mm] g = id$ (bzw. $g [mm] \circ [/mm] f = id$)

Nun weiß ich nur leider nicht, wie ich die obigen Behauptungen der Aufgabe beweisen kann, da dies ja nicht einfach die Umkehrfunktionen sind.
Ich könnte wetten, dass die Lösungsidee zu obiger Aufgabe total einfach ist :D

Ich würde mich sehr freuen, wenn mir jemand weiterhelfen könnte!

        
Bezug
injektiv, surjektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 01:52 Do 06.10.2011
Autor: reverend

Hallo Mija,

Du denkst zu kompliziert.

> Seien [mm]R_1,R_2,S_1,S_2[/mm] Mengen, so dass [mm]R_1 \subseteq R_2, S1 \subseteq S_2[/mm].
>  
> Zeigen Sie:
>  a) Falls eine injektive Funktion von [mm]R_2[/mm] nach [mm]S_1[/mm]
> existiert, dann existiert auch eine injektive Funktion von
> [mm]R_1[/mm] nach [mm]S_2[/mm].
>  b) Falls [mm]R_1 \not= \emptyset[/mm] und es existiert eine
> surjektive Funktion von [mm]R_1[/mm] nach [mm]S_2[/mm] existiert, dann
> existiert auch eine surjektive Funktion von [mm]R_2[/mm] nach [mm]S_1[/mm].

>

>  Hallo,
>  
> ich weiß, dass die Umkehrfunktion einer injektiven
> Funktion injektiv ist. Ich weiß auch, dass es zu einer
> injektiven (bzw. surjektiven) Funktion f eine
> Umkehrfunktion g existiert, so dass [mm]f \circ g = id[/mm] (bzw. [mm]g \circ f = id[/mm])

Hm. Das brauchst Du beides nicht, scheint mir.

> Nun weiß ich nur leider nicht, wie ich die obigen
> Behauptungen der Aufgabe beweisen kann, da dies ja nicht
> einfach die Umkehrfunktionen sind.
>  Ich könnte wetten, dass die Lösungsidee zu obiger
> Aufgabe total einfach ist :D

Ja. Mal mal ein paar Bildchen, also Venndiagramme und Zuordnungen.

Auch die Unterscheidung zwischen Definitionsmenge und Wertemenge hilft als Denkanstoß.

> Ich würde mich sehr freuen, wenn mir jemand weiterhelfen
> könnte!

Komm, das schaffst Du selbst. Es ist nicht schwierig.

Grüße
reverend


Bezug
                
Bezug
injektiv, surjektiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:02 Do 06.10.2011
Autor: Mija

Basiert der Beweis einfach darauf, dass ja [mm] $R_1 \subseteq R_2$ [/mm] und [mm] $S_1 \subseteq S_2$ [/mm] ?
Also im injektiven Fall: Wenn x und y in [mm] $R_1$ [/mm] liegen, dann liegen sie ja auch in [mm] $R_2$. [/mm] Und im Wertebreich liegen $F(x)$ und $F(y)$ dann in [mm] $S_1$, [/mm] welche ja Teilmenge von [mm] $S_2$ [/mm] ist

Bezug
                        
Bezug
injektiv, surjektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 13:09 Do 06.10.2011
Autor: fred97


> Basiert der Beweis einfach darauf, dass ja [mm]R_1 \subseteq R_2[/mm]
> und [mm]S_1 \subseteq S_2[/mm] ?
>  Also im injektiven Fall: Wenn x und y in [mm]R_1[/mm] liegen, dann
> liegen sie ja auch in [mm]R_2[/mm].


Ja. Ist [mm] $f:R_2 \to S_1$ [/mm] injektiv, so def. [mm] $g:R_1 \to S_2 [/mm] $ durch: g(r):=f(r) (r [mm] \in R_1) [/mm]

> Und im Wertebreich liegen [mm]F(x)[/mm]
> und [mm]F(y)[/mm] dann in [mm]S_1[/mm], welche ja Teilmenge von [mm]S_2[/mm] ist

Ja

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]