matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebrainjektiv, surjektiv, total
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - injektiv, surjektiv, total
injektiv, surjektiv, total < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

injektiv, surjektiv, total: Frage
Status: (Frage) beantwortet Status 
Datum: 13:39 So 09.01.2005
Autor: RoterBlitz

Hi,
habe folgende Aufgabenstellung:

f1:  [mm] \IN \times \IN \to \IN \times \IN, [/mm] mit f1 (m, n) = (n * m, n)
f2: [mm] \IN \times \IN \to \IN \times \IN, [/mm] mit f2 (m, n) = (m + n², m)
f3:
f4: usw...
Zu beachten ist daß 0 [mm] \in \IN. [/mm]

nun ist anzugeben, ob diese Funktionen injektiv und/oder surjektiv sind.

Leider habe ich wieder mal ein Verständnisproblem schon alleine mit der Angabe (f1 (m, n) = (n * m, n) )

DANKE,
RoterBlitz


        
Bezug
injektiv, surjektiv, total: Probleme mit Definitionen?
Status: (Antwort) fertig Status 
Datum: 15:52 So 09.01.2005
Autor: Karl_Pech

Hi RoterBlitz,

In der letzten Antwort von wluut war ein sehr guter Link zu einer freien []Wissensdatenbank, die sicherlich auch Infos zu Injektivität, Surjektivität und anderen Dingen enthält. Alternativ: Schau dich doch einfach mal auf dieser Seite etwas um. ;-) Unter links auf der Startseite findest du den Kasten "Partnerseiten" (vor allem der Links zur MatheBank dürfte interessant sein.)

Also gut, hier erstmal einige Definitionen (Es wird angenommen, daß M und N zwei nichtleere Mengen sind.)

Injektivität:

Eine Funktion $f:M [mm] \to [/mm] N$ nennt man injektiv, wenn [m]\forall x,y \in M:f\left( x \right) = f\left( y \right) \Rightarrow x = y[/m].

Surjektivität:

Eine Funktion $f:M [mm] \to [/mm] N$ nennt man surjektiv, wenn [m]\forall y \in N\,\exists x \in M:f\left( x \right) = y[/m].

Zur Totalität kann ich dir im Moment noch nicht wirklich helfen, aber ich meine, daß das ähnlich der Surjektivität ist.

Ok, und jetzt zu deinen Aufgaben:

Gegeben [m]f_1 : = \mathbb{N}^2 \to \mathbb{N}^2 ;\,f_1 \left( {m,n} \right) = (nm,n)[/m]. Wir wollen zeigen oder widerlegen, daß [mm] $f_1$ [/mm] injektiv und/oder surjektiv ist:

Es gilt: [m]\begin{gathered} f_1 (m_1 ,n_1 ) = f_1 \left( {m_2 ,n_2 } \right) \Leftrightarrow (n_1 m_1 ,n_1 ) = (n_2 m_2 ,n_2 ) \hfill \\ \Rightarrow \left( {\text{I}} \right)\;n_1 = n_2 \wedge \left( {{\text{II}}} \right)\;n_1 m_1 = n_2 m_2 \hfill \\ \mathop \Rightarrow \limits^{\left( {\text{I}} \right)} n_1 m_1 = n_1 m_2 \Leftrightarrow m_1 = m_2 \hfill \\ \end{gathered}[/m]

Damit müßte [mm] $f_1$ [/mm] injektiv sein. Ist [mm] $f_1$ [/mm] surjektiv? Es gilt:
[m]\begin{gathered} \left( {nm,n} \right) = \left( {y_1 ,y_2 } \right) \Rightarrow n = y_2 \Rightarrow y_2 m = y_1 \hfill \\ \Leftrightarrow m = \frac{{y_1 }} {{y_2 }} \hfill \\ \end{gathered}[/m]

Allerdings sagst du, daß 0 nicht ausgeschlossen wurde. Für [mm] $y_2 [/mm] = 0$ kriegen wir Probleme, also ist [mm] $f_1$ [/mm] vermutlich nicht surjektiv.

Dasselbe müßtest du jetzt auch mit [mm] $f_2$ [/mm] probieren.


Gruß
Karl



Bezug
        
Bezug
injektiv, surjektiv, total: zur Schreibweise der Funktion
Status: (Antwort) fertig Status 
Datum: 17:18 So 09.01.2005
Autor: Bastiane

Hallo RoterBlitz!

> f1:  [mm]\IN \times \IN \to \IN \times \IN,[/mm] mit f1 (m, n) =
> (n * m, n)
> Leider habe ich wieder mal ein Verständnisproblem schon
> alleine mit der Angabe (f1 (m, n) = (n * m, n) )

Deine Funktion [mm] f_1 [/mm] ist definiert auf der Menge [mm] \IN \times \IN, [/mm] das heißt dein Definitionsbereich ist zweidimensional, du hast als Eingabe also zwei Werte bzw. ein Tupel von zwei Zahlen. Und dein Wertebereich ist ebenso definiert, das heißt, du erhältst auch ein Tupel von zwei Zahlen.
[mm] f_1(m,n)=(n*m,n) [/mm] bedeutet nun lediglich, dass die erste "Komponente" von der Eingabe (also das m) auf n*m abgebildet wird und die zweite Komponente einfach so bleibt, wie sie ist.

Beispiel:
[mm] f_1(2,3)=(3*2,3)=(6,3) [/mm]

verstehst du die Schreibweise jetzt?


Viele Grüße
Bastiane
[cap]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]