matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieintegral/ableitung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integrationstheorie" - integral/ableitung
integral/ableitung < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

integral/ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:33 So 01.02.2015
Autor: mimo1

Aufgabe
Zeige, dass für t>0 gilt

[mm] \integral_\IR{x^2e^{-tx^2}dx}=-\bruch{d}{dt}\integral_\IR{e^{-tx^2}dx} [/mm]

Benutze dies zur Berechnung von [mm] \integral_\IR{x^2e^{-x^2}dx}, [/mm] wobei [mm] \integral_\IR{e^{-tx^2}dx}=\wurzel{\pi} [/mm]

hallo

also ich bin folgend herangegangen, indem ich es von hinten gezeigt habe d.h. ich muss zeigen dass ich die ableitung in das Integral ziehen kann, oder?

[mm] -\bruch{d}{dt}\integral_\IR{e^{-tx^2}dx}=\bruch{d}{dt}\integral_\IR{-e^{-tx^2}dx}=\limes_{h\rightarrow 0}\bruch{1}{h}(\integral_\IR{-e^{-(t+h)x^2}dx}-\integral_\IR{-e^{-tx^2}dx})=\limes_{h\rightarrow 0}(\integral_\IR{\bruch{e^{-tx^2}-e^{-(t+h)x^2}}{h}dx}) [/mm]

wir hatten eine mal eine ähnlich aufgaben bei dem wir vom Integral

[mm] \integral{e^{tx}\bruch{sinx}{x}dx} [/mm]        
die Ableitung bestimmen.
ich habe mich daran orieniertiert.

aber dann steht in der Lösung [mm] \limes_{h\rightarrow0}(\bruch{e^{-(t+h)x}-e^{-tx}}{h})=e^{-tx}=-xe^{-tx} [/mm]

in meinem fall würde es gegen [mm] e^{-tx^2} [/mm] konvergieren für h gegen 0.

meine frage jetzt:warum ist es so? ich hätte gesagt dass es gegen 0 konvergiert.

ich bin für jede hilfe dankbar und hoffe ihr könnt mir bei der Aufgabe weiterhelfen.



        
Bezug
integral/ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:45 So 01.02.2015
Autor: MathePower

Hallo mimo1,

> Zeige, dass für t>0 gilt
>  
> [mm]\integral_\IR{x^2e^{-tx^2}dx}=-\bruch{d}{dt}\integral_\IR{e^{-tx^2}dx}[/mm]
>  
> Benutze dies zur Berechnung von
> [mm]\integral_\IR{x^2e^{-x^2}dx},[/mm] wobei
> [mm]\integral_\IR{e^{-tx^2}dx}=\wurzel{\pi}[/mm]
>  hallo
>  
> also ich bin folgend herangegangen, indem ich es von hinten
> gezeigt habe d.h. ich muss zeigen dass ich die ableitung in
> das Integral ziehen kann, oder?
>  
> [mm]-\bruch{d}{dt}\integral_\IR{e^{-tx^2}dx}=\bruch{d}{dt}\integral_\IR{-e^{-tx^2}dx}=\limes_{h\rightarrow 0}\bruch{1}{h}(\integral_\IR{-e^{-(t+h)x^2}dx}-\integral_\IR{-e^{-tx^2}dx})=\limes_{h\rightarrow 0}(\integral_\IR{\bruch{e^{-tx^2}-e^{-(t+h)x^2}}{h}dx})[/mm]
>  
> wir hatten eine mal eine ähnlich aufgaben bei dem wir vom
> Integral
>  
> [mm]\integral{e^{tx}\bruch{sinx}{x}dx}[/mm]        
> die Ableitung bestimmen.
> ich habe mich daran orieniertiert.
>  
> aber dann steht in der Lösung
> [mm]\limes_{h\rightarrow0}(\bruch{e^{-(t+h)x}-e^{-tx}}{h})=e^{-tx}=-xe^{-tx}[/mm]
>  
> in meinem fall würde es gegen [mm]e^{-tx^2}[/mm] konvergieren für
> h gegen 0.
>  
> meine frage jetzt:warum ist es so? ich hätte gesagt dass
> es gegen 0 konvergiert.
>


Betrachte Zähler und Nenner des Ausdruckes:

[mm]\bruch{e^{-tx^2}-e^{-(t+h)x^2}}{h}[/mm]

Zähler und Nenner gehem hier für h gegen 0 ebenfalls gegen 0.
Somit liegt hier ein unbestimmter Ausdruck der Form "[mm]\bruch{0}{0}[/mm]" vor.
Das  ist somit ein Fall für L'hospital.


> ich bin für jede hilfe dankbar und hoffe ihr könnt mir
> bei der Aufgabe weiterhelfen.
>  


Gruss
MathePower

Bezug
                
Bezug
integral/ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:47 So 01.02.2015
Autor: mimo1

dankeschön, darauf müsste ich eigenlich auch selber kommen :)

Bezug
        
Bezug
integral/ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 07:45 Mo 02.02.2015
Autor: fred97

  
> aber dann steht in der Lösung
> [mm]\limes_{h\rightarrow0}(\bruch{e^{-(t+h)x}-e^{-tx}}{h})=e^{-tx}=-xe^{-tx}[/mm]

Das erste "=" ist falsch !

Die Sache mit l'Hospital zu bearbeiten , halte ich für überzogen.

Sei x fest und setze [mm] f(t):=e^{-tx} [/mm]

Dann gilt

     [mm] $\bruch{e^{-(t+h)x}-e^{-tx}}{h}=\bruch{f(t+h)-f(t)}{h} \to f'(t)=-xe^{-tx}$ [/mm]  für $h [mm] \to [/mm] 0$.

FRED

>  
> in meinem fall würde es gegen [mm]e^{-tx^2}[/mm] konvergieren für
> h gegen 0.
>  
> meine frage jetzt:warum ist es so? ich hätte gesagt dass
> es gegen 0 konvergiert.
>
> ich bin für jede hilfe dankbar und hoffe ihr könnt mir
> bei der Aufgabe weiterhelfen.
>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]