matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungintegral mit e
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - integral mit e
integral mit e < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

integral mit e: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:32 Fr 16.04.2010
Autor: isabel-f

hey, ich hab ne frage, und zwar ob meine rechnung so stimmt.

die integralaufgabe lautet [mm] \integral_{1}^{e}{(2/x + 4x) dx} [/mm]

meine Stammfunktion ist dann [mm] 2*x^0 [/mm] + 2x² = [mm] 2*e^0 [/mm] +2e² -(2+2)=2+2e²-4=-2+2e²

stimmt das so????
bitte schnelle antwort!

        
Bezug
integral mit e: Antwort
Status: (Antwort) fertig Status 
Datum: 14:37 Fr 16.04.2010
Autor: schachuzipus

Hallo isabel-f,

> hey, ich hab ne frage, und zwar ob meine rechnung so
> stimmt.
>  
> die integralaufgabe lautet [mm]\integral_{1}^{e}{(2/x + 4x) dx}[/mm]
>  
> meine Stammfunktion ist dann [mm]2*x^0[/mm] [notok]+ 2x² = [mm]2*e^0[/mm] +2e²
> -(2+2)=2+2e²-4=-2+2e²
>  
> stimmt das so????
>  bitte schnelle antwort!

Drängeln ist nicht die feine Art und hier im Forum überhaupt gar nicht gerne gesehen!!!

Die Potenzregel für das Integrieren, also [mm] $\int{x^n \ dx}=\frac{1}{n+1}x^{n+1} [/mm] \ [mm] \left(+c\right)$ [/mm] gilt für alle reellen [mm] $n\neq [/mm] -1$

Das Integral für $n=-1$, also [mm] $\int{x^{-1} \ dx}=\int{\frac{1}{x} \ dx}$ [/mm] hat eine Sonderstellung.

Das musst du dir merken!

Es ist [mm] $\int{\frac{1}{x} \ dx}=\ln(|x|) [/mm] \ [mm] \left(+c\right)$ [/mm]

Gruß

schachuzipus


Bezug
                
Bezug
integral mit e: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:44 Fr 16.04.2010
Autor: isabel-f

danke für die schnelle antwort. ja es tut mir leid..ich habs nicht so gemeint.

ok, ich wusste, dass da irgendwas anders ist. aber wenn ich für 2/x als stammfunktion dann 2*ln(x) bekomme und e für x einsetze, kommt doch das gleiche ergebnis heraus, wie bei meiner rechnung!? oder?

Bezug
                        
Bezug
integral mit e: Antwort
Status: (Antwort) fertig Status 
Datum: 14:47 Fr 16.04.2010
Autor: schachuzipus

Hallo nochmal,

> danke für die schnelle antwort. ja es tut mir leid..ich
> habs nicht so gemeint.
>  
> ok, ich wusste, dass da irgendwas anders ist. aber wenn ich
> für 2/x als stammfunktion dann 2*ln(x) bekomme und e für
> x einsetze, kommt doch das gleiche ergebnis heraus, wie bei
> meiner rechnung!? oder?

Nein, ich erhalte als Ergebnis [mm] $2e^2$ [/mm]

Gruß

schachuzipus


Bezug
                                
Bezug
integral mit e: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:53 Fr 16.04.2010
Autor: isabel-f

stimmt. ln1 gibt ja null...vielen dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]