matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungintegralfunktion einzeichnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - integralfunktion einzeichnen
integralfunktion einzeichnen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

integralfunktion einzeichnen: aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:39 Fr 28.03.2008
Autor: miumiu

Aufgabe
f(x)= -x²+4, a=2  

man soll ohne weitere rechnung den graphen der integralfunktion einzeichnen.

die stellen,an der die funktion eine nullstelle hat,sind extremstellen der integralfunktion und die extremstellen der funktion sind wendepunkte der integralfunktion(stimmt es so?).
aber wie komme ich auf die genauen punkte ohne rechnung bzw. wie schätzt man die position der punkte ab?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
  

        
Bezug
integralfunktion einzeichnen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:50 Fr 28.03.2008
Autor: abakus


> f(x)= -x²+4, a=2
> man soll ohne weitere rechnung den graphen der
> integralfunktion einzeichnen.
>
> die stellen,an der die funktion eine nullstelle hat,sind
> extremstellen der integralfunktion und die extremstellen
> der funktion sind wendepunkte der integralfunktion(stimmt
> es so?).
>  aber wie komme ich auf die genauen punkte ohne rechnung
> bzw. wie schätzt man die position der punkte ab?
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>    

Hallo,
es ist offensichtlich an der Stelle a=2 der Funktionswert der Integralfunktion gerade 0 (Flächeninhalt "zwischen" x-Achse, Graph und den Geraden x=a und x=a). Für a>2 liegt -x²+4, unter der x-Achse, also negativer Flächenzuwachs. Von 2 bis -2 haben wir positiven Flächenzuwachs, die Integralfunktion hat also bei -2 ihr Maximum.
Viele Grüße
Abakus

Bezug
                
Bezug
integralfunktion einzeichnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:59 Fr 28.03.2008
Autor: miumiu

danke für die schnelle antwort^^!

den y-wert bekomme ich dann durch das einsetzen in die funktion?

Bezug
                        
Bezug
integralfunktion einzeichnen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:03 Fr 28.03.2008
Autor: Maggons

Hallo!

Man kann/muss bei diesen Aufgabenstellungen nicht den exakten y- Wert wissen (außer man berechnet sie halt konkret durch Bilden der Integralfunktion und darauf folgendem Einsetzen, was hier aber vollkommen überflüssig ist).

Mach es einfach "nach Gefühl"; wichtig ist halt nur, dass dein Extrempunkt dann auch wirklich der höchste Punkt ist etc.

Es geht nur darum die wesentlichen Sachen aufzugreifen wie die Position der Extrempunkte, Wendestellen etc.; es wird keine exakte Zeichnung der Integralfunktion erwartet.

Lg

Bezug
                                
Bezug
integralfunktion einzeichnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:07 Fr 28.03.2008
Autor: miumiu

könnte man die punkte auch mit hilfe der fläche des integrals einschätzen?

Bezug
                                        
Bezug
integralfunktion einzeichnen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:21 Fr 28.03.2008
Autor: Maggons

Hallo!

Falls du z.B. die Fläche zwischen 2 Nullstellen der Funktion hast wie 0 und 2 und nun noch dazu weißt, dass der Flächeninhalt in diesem Intervall 2 Flächeneinheiten beträgt, kannst du ein wenig "Kästchen zählen" und deine Kurve so hoch ziehen, dass sie in etwa 2 Flächeneinheiten einschließt, falls ich dich gerade richtig verstanden hab.

Falls du aber nur die gesamte Fläche unter dem Integral hast und dieses noch mehrere Nullstellen bestitzt, sollte dir die Fläche nicht sehr viel nützen.

Lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]