integrationsgrenzen < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Z1: [mm] \{(x,y,z)\in\IR^{3}| |x| \le 2r \wedge y^{2}+x^{2} \le r^{2}\}
[/mm]
Z2: [mm] \{(x,y,z)\in\IR^{3}| |y| \le 2r \wedge x^{2}+z^{2} \le r^{2}\}
[/mm]
berechne das volumen der menge Z1 [mm] \cap [/mm] Z2. |
zunächst wollte ich zeigen,dass das volumen sich durch einen ausdruck der form [mm] \integral_{-r}^{r} \integral_{- \wurzel{r^{2}-z^{2}}}^{\wurzel{r^{2}-z^{2}}}{\integral_{- \wurzel{r^{2}-z^{2}}}^{\wurzel{r^{2}-z^{2}}}{ dx}dy} [/mm] dz
beschreiben lässt.
kann mir das jemand bitte erläutern,warum die integrationsgrenzen so gewählt werden können? ich hab soviel herumgerechnet ,aber darauf komme ich irgendwie nicht.
ich weiß zwar ,dass (|y|)|x| [mm] \le \wurzel{r^{2}-z^{2}} \le [/mm] 2r
warum nimmt man dann nicht einfach 2r?
und dann natürlich,dass [mm] 0\le r^{2}-z^{2} [/mm] und deswegen
die integrationsgrenze zwischen -r und r.
|
|
|
|
> Z1: [mm]\{(x,y,z)\in\IR^{3}| |x| \le 2r \wedge y^{2}+x^{2} \le r^{2}\}[/mm]
>
> Z2: [mm]\{(x,y,z)\in\IR^{3}| |y| \le 2r \wedge x^{2}+z^{2} \le r^{2}\}[/mm]
>
> berechne das volumen der menge Z1 [mm]\cap[/mm] Z2.
> zunächst wollte ich zeigen,dass das volumen sich durch
> einen ausdruck der form [mm]\integral_{-r}^{r} \integral_{- \wurzel{r^{2}-z^{2}}}^{\wurzel{r^{2}-z^{2}}}{\integral_{- \wurzel{r^{2}-z^{2}}}^{\wurzel{r^{2}-z^{2}}}{ dx}dy}[/mm]
> dz
> beschreiben lässt.
>
> kann mir das jemand bitte erläutern,warum die
> integrationsgrenzen so gewählt werden können? ich hab
> soviel herumgerechnet ,aber darauf komme ich irgendwie
> nicht.
> ich weiß zwar ,dass (|y|)|x| [mm]\le \wurzel{r^{2}-z^{2}} \le[/mm]
> 2r
> warum nimmt man dann nicht einfach 2r?
> und dann natürlich,dass [mm]0\le r^{2}-z^{2}[/mm] und deswegen
> die integrationsgrenze zwischen -r und r.
Ich würde mir an Deiner Stelle erst einmal eine grobe Skizze von [mm] $Z_1$ [/mm] und [mm] $Z_2$ [/mm] herstellen. Wegen [mm] $y^2+x^2\leq r^2\Rightarrow |x|\leq [/mm] r < 2r$ ist der Zusatz [mm] $|x|\leq [/mm] 2r$ bei [mm] $Z_1$ [/mm] irrelevant. [mm] $Z_1$ [/mm] ist meiner Meinung nach einfach ein (unendlich ausgedehnter) Kreiszylinder mit Radius $r$ und Achse = $z$-Achse.
[mm] $Z_2$, [/mm] andererseits, ist ein Kreiszylinder mit Radius $r$ und Achse = $y$-Achse, Mittelpunkt $(0,0)$ und Höhe [mm] $2\times [/mm] 2r$.
Wenn Du nun also zuerst $y$ im Bereich $[-r;+r]$ wählst, dann kann $x$ wegen der Beschränkung auf [mm] $Z_1$ [/mm] nur noch im Bereich [mm] $[-\sqrt{r^2-y^2};+\sqrt{r^2-y^2}]$ [/mm] variieren. Wegen der Beschränkung auf [mm] $Z_2$ [/mm] kann dann schliesslich $z$ nur noch im Bereich [mm] $[-\sqrt{r^2-x^2};+\sqrt{r^2-x^2}]$ [/mm] variieren.
Dies ergäbe also insgesamt die folgenden Integrationsgrenzen:
[mm]\displaystyle V=\int_{-r}^{+r}\int_{-\sqrt{r^2-y^2}}^{+\sqrt{r^2-y^2}}\int_{-\sqrt{r^2-x^2}}^{+\sqrt{r^2-x^2}}\; dz \; dx\; dy[/mm]
|
|
|
|
|
danke für deine hilfe.ich hatte jedoch vergessen zu schreiben,dass die integrationsreihenfolge dxdydz fest vorgeschrieben ist.
|
|
|
|
|
Hallo
wer schreibt das vor? Ich denke der Witz solcher Mehrfachintegrale ist doch, dass man die Reihenfolge (geschickt) selber wählen kann! Oder versteh ich hier was nicht richtig?
Gruß korbinian
|
|
|
|
|
> danke für deine hilfe.ich hatte jedoch vergessen zu
> schreiben,dass die integrationsreihenfolge dxdydz fest
> vorgeschrieben ist.
Zu dieser Integrationsreihenfolge [mm] $dx\;dy\;dz$ [/mm] folgende Skizze:
[Dateianhang nicht öffentlich]
Rot ausgefüllt ein Volumenelement der Dicke $dz$ zu festem [mm] $z\in [/mm] [-r,+r]$, dessen Querschnittsfläche man durch Aufintegrieren von als dicker roter Strich angedeuteten Flächenelementen der Breite $dy$ bestimmen müsste.
Nun ist das Problem einfach dieses: dass man den Bereich der $x$-Werte für gegebenes $y$ in dieser Fläche, d.h. die Länge solcher Flächenelemente, nicht direkt in einen analytischen Ausdruck packen kann. Man könnte allenfalls eine Fallunterscheidung versuchen, aber das wäre doch so ziemlicher Müll.
Dateianhänge: Anhang Nr. 1 (Typ: Png) [nicht öffentlich]
|
|
|
|
|
dankeschön,es war eine klausuraufgabe (mit vorgeschriebener reihenfolge) ,für die man ca 10 minuten brauchen
sollte.ich habe nur 4 von 10 punkten bekommen.ich hatte auf jeden fall schwierigkeiten mir das schnell geometrisch zu vergegenwärtigen.
|
|
|
|