matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und Vektorräumeirreduzibel und Primelement
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Moduln und Vektorräume" - irreduzibel und Primelement
irreduzibel und Primelement < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

irreduzibel und Primelement: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:21 Do 07.04.2016
Autor: Johnny1994

In der Vorlesung zur Linearen Algebra II haben wir folendes Beispiel aufgeführt um Irreduzibilität und Prim zu beweisen.

Beispiel: 2 ist irreduzibel in [mm] \IZ[\wurzel{-5}] [/mm]
wir haben das so aufgebaut:

[mm] (a+b\wurzel{-5})*(x+y\wurzel{-5})=2 [/mm]
[mm] (a-b\wurzel{-5})*(x-y\wurzel{-5})=2 [/mm]

* [mm] (a^2+5b^2)(x^2+5y^2)= [/mm] 4 daraus folgt ja die Irreduzubilität

Ähnlich geht ja der nachweis des Primelement

ich verstehe nur nicht, wie man auf einen Schritt kommt:

2 ist kein Primelement
zz: 1) 2 teilt nicht [mm] (1+\wurzel{-5}), [/mm]
2) 2 teilt nicht [mm] 1-\wurzel{-5} [/mm]
und 3) 2 teilt [mm] (1+\wurzel{-5})*(1-\wurzel{-5}) [/mm]

und bei 3 gilt  2*3=6 [mm] =(1+\wurzel{-5})*(1-\wurzel{-5}) [/mm] wie kommt man auf die 3? ist diese beliebig gewählt? 2 ist klar

ich bin schon am verzweifeln! Vielen Dank im Voraus für Eure Hilfe! LG Johnny

        
Bezug
irreduzibel und Primelement: Antwort
Status: (Antwort) fertig Status 
Datum: 14:35 Do 07.04.2016
Autor: fred97


> In der Vorlesung zur Linearen Algebra II haben wir folendes
> Beispiel aufgeführt um Irreduzibilität und Prim zu
> beweisen.
>
> Beispiel: 2 ist irreduzibel in [mm]\IZ[\wurzel{-5}][/mm]
>  wir haben das so aufgebaut:
>  
> [mm](a+b\wurzel{-5})*(x+y\wurzel{-5})=2[/mm]
>  [mm](a-b\wurzel{-5})*(x-y\wurzel{-5})=2[/mm]
>  
> * [mm](a^2+5b^2)(x^2+5y^2)=[/mm] 4 daraus folgt ja die
> Irreduzubilität
>  
> Ähnlich geht ja der nachweis des Primelement
>  
> ich verstehe nur nicht, wie man auf einen Schritt kommt:
>  
> 2 ist kein Primelement
> zz: 1) 2 teilt nicht [mm](1+\wurzel{-5}),[/mm]
>  2) 2 teilt nicht [mm]1-\wurzel{-5}[/mm]
>   und 3) 2 teilt [mm](1+\wurzel{-5})*(1-\wurzel{-5})[/mm]
>  
> und bei 3 gilt  2*3=6 [mm]=(1+\wurzel{-5})*(1-\wurzel{-5})[/mm] wie
> kommt man auf die 3? ist diese beliebig gewählt? 2 ist
> klar
>  
> ich bin schon am verzweifeln! Vielen Dank im Voraus für
> Eure Hilfe! LG Johnny

Es ist


[mm] $(1+\wurzel{-5})*(1-\wurzel{-5})=6=2*3$ [/mm]

Somit ist 2 ein Teiler von [mm](1+\wurzel{-5})*(1-\wurzel{-5})[/mm]

FRED


Bezug
                
Bezug
irreduzibel und Primelement: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:10 Do 07.04.2016
Autor: Johnny1994

Aber woher kommt die 3 und warum =6?

LG Johnny

Bezug
                        
Bezug
irreduzibel und Primelement: Antwort
Status: (Antwort) fertig Status 
Datum: 15:35 Do 07.04.2016
Autor: fred97


> Aber woher kommt die 3 und warum =6?

$ [mm] (1+\wurzel{-5})\cdot{}(1-\wurzel{-5})=1^2-(\wurzel{-5})^2=1-(-5)=6 [/mm] $

Das erste "=" ist Binomi.

Weiter ist 6=2*3

FRED

>  
> LG Johnny


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]